“P-L § swisscom

MASTER THESIS

Unsupervised Pattern Discovery for
Mobile Network Tuning Optimization

Supervisors:

Prof. HAITHAM AL HASSANIEH
Dr. DAVID FROELICHER

Dr DANIEL DOBOS

Author:
NADEZHDA ILIEVA

LABORATORY OF SENSING AND NETWORKING SYSTEMS (SENS)
ScHOOL OF COMPUTER AND COMMUNICATION SCIENCES, EPFL
SwisscoM DiGITAL LAB, SwisscoM AG

Lausanne, 22 August 2025

L’important dans la vie ce n’est point le triomphe, mais le combat,
I’essentiel ce n’est pas d’avoir vaincu mais de s’étre bien battu.
— Pierre de Coubertin

Acknowledgements

I would like to thank my supervisors Prof. Haitham Al Hassanieh, Dr. David Froelicher and
Dr. Daniel Dobos for their support and guidance throughout the duration of this thesis. I am
also very grateful for the collaboration and invaluable discussions with Ivan Vallejo Vall from the
Wireless Analytics team, as well as Josko Kresic, Guarisco Noris and Francesco Pellegrini, radio
network engineers at Swisscom. Finally, many thanks to everyone at the Swisscom Digital Lab,
including the research engineers and fellow interns, for their kindness and support, which made
my time during the thesis much more enjoyable.

I would also like to acknowledge and thank everyone else who has been part of my journey at
EPFL. Huge thank you to my parents, my sister Jasna and Justin for their love and support, to
my second family in Switzerland, and to my friends. I am also immensely grateful to Prof. Serge
Vaudenay for making it possible to study at EPFL by graciously offering me a Research Scholar
position and for his kindness.

Lausanne, August 2025

Abstract

To ensure reliable service, mobile network operators continuously monitor and manage their net-
works. Radio network engineers analyze the performance of mobile cells and adjust configuration
parameters to optimize operation, through a process commonly known as tuning. However, tuning
is time-consuming and repetitive, which makes it inefficient at scale. This thesis addresses the
problem of detecting recurring performance patterns across mobile cells to support semi-automated
network tuning. Instead of relying on predefined rules or known issues, the proposed approach
uses unsupervised machine learning techniques to group mobile cells based on their performance
similarities. This allows engineers to analyze entire clusters, identify shared issues, and apply
common solutions, ultimately reducing workload and improving the response times. The thesis
explores various data representations, including image-based and graph-based representations,
and compares several embedding learning techniques, such as convolutional neural networks,
autoencoders, and graph-based models. It evaluates multiple clustering algorithms, including
k-means, DBSCAN, and Spectral clustering. Given the unsupervised nature of the problem, it
proposes an evaluation pipeline using multiple visualizations (e.g., PCA, t-SNE, UMAP, custom
heatmaps) and clustering metrics (e.g., clustering coefficients, Rand index, mutual information).

Keywords: wunsupervised representation learning, clustering, pattern discovery

List of Tables

6.1
6.2
6.3
6.4
6.5

6.6
6.7
6.8
6.9

Al
A2
A3
A4
A5

Clustering parameters by embedding-learning method 36
Adjusted Rand Index (ARI) between clustering methods (Pretrained CNN) . . . 40
Adjusted Mutual Information (AMI) between clustering methods (Pretrained CNN) 40

Adjusted Rand Index (ARI) between clustering methods (Single-layer KPI CAE) 45
Adjusted Mutual Information (AMI) between clustering methods (Single-layer KPI

CAE) . . 45
Adjusted Rand Index (ARI) between clustering methods (VGAE) 55
Adjusted Mutual Information (AMI) between clustering methods (VGAE) 55
Clustering coefficients for k-means and Spectral clustering (DGLC) 56

ARI and AMI indices between k-means and Spectral clustering cluster assignments
for different numbers of clusters (DGLC) 56

Training and validation results for different Single-layer KPI CAE configurations 72
Training and validation results for different Multi-layer KPI CAE configurations . 72

Training and validation results for different GAE configurations 73
Training and validation results for different VGAE configurations 75
Training and validation results for different DGLC configurations 75

List of Figures

3.1
3.2

4.1
4.2
4.3

5.1
5.2
5.3
5.4

9.5

5.6
5.7
5.8

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Architecture of a convolutional neural network. 6
Architecture of a convolutional autoencoder (CAE) (Guo et al. 2017). 7
Reference table for throughput, SINR, RSRP and RSRQ 21
Cell-related (left) and tile-related (right) attributes 23
Pearson and Spearman correlation matrices for the average SINR, RSRP and RSRQ 24

Methodology overview 25
Evaluation overview L Lo 26
An example of an interactive footprint map generated by an internal Swisscom tool 27

Example of an image-based representation of a single mobile cell. The cell site is
centered and the image is rotated so the beam direction points north. Tiles are
shown as circles, and KPI values are shown using color. The three images represent
different KPIs: throughput doominance, SINR, and RSRP. 28
Example of an graph-based representation of a single mobile cell. Tiles are
represented as nodes, and KPI measurements as node features. Edges are drawn

between neighboring tiles. Lo 29
An illustration of the pipeline with a pretrained CNN 30
An illustration of the pipeline with a convolutional autoencoder (CAE) 30
Example of a radial sector map Lo 35

Silhouette, Calinski-Harabasz and Davies-Bouldin scores for different values of k

of the k-means algorithm (Pretrained CNN) 37
Elbow method for k-means (left) and k-dist graph for DBSCAN (right) (Pretrained
CNN) o 38
Number of clusters and fraction of outliers as functions of ¢ and min_samples
(Pretrained CNN)o 39
Silhouette, Calinski-Harabasz and Davies-Bouldin scores for different values of &k
of the Spectral clustering algorithm (Pretrained CNN) 39
Eigengap heuristic for Spectral clustering (Pretrained CNN) 40

Clustering results on pretrained CNN embeddings visualized with PCA (left),
t-SNE (center), and UMAP (right), using k-means (top row), DBSCAN (middle
row), and Spectral clustering (bottom row). oL 41
Spatial performance patterns discovered using k-means, shown as radial sector
maps of bad throughput probability per sector (Pretrained CNN) 42

List of Figures List of Figures

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

Spatial performance patterns discovered using DBSCAN, shown as radial sector
maps of bad throughput probability per sector (Pretrained CNN) 42
Spatial performance patterns discovered using Spectral clustering, shown as radial
sector maps of bad throughput probability per sector (Pretrained CNN) 42
Example mobile cells from Cluster 9 discovered by DBSCAN (Pretrained CNN) . 43
Example mobile cells from Cluster 14 discovered by DBSCAN (Pretrained CNN) 43
Example mobile cells from Cluster 17 discovered by DBSCAN (Pretrained CNN) 43
Clustering results on Single-layer KPI CAE embeddings visualized with PCA (left),
t-SNE (center), and UMAP (right), using k-means (top row), DBSCAN (middle
row), and Spectral clustering (bottom row). L. 45
Spatial performance patterns discovered using k-means, shown as radial sector
maps of bad throughput probability per sector (Single-layer KPI CAE) 46
Spatial performance patterns discovered using DBSCAN, shown as radial sector
maps of bad throughput probability per sector (Single-layer KPI CAE) 46
Spatial performance patterns discovered using Spectral clustering, shown as radial
sector maps of bad throughput probability per sector (Single-layer KPI CAE) . . 46
Example mobile cells from Cluster 4 discovered by k-means (Single-layer KPI CAE) 47
Example mobile cells from Cluster 8 discovered by k-means (Single-layer KPI CAE) 47
Example mobile cells from Cluster 13 discovered by k-means (Single-layer KPI CAE) 48
Multi-layer KPI CAE embeddings visualized with PCA (left), t-SNE (center), and
UMAP (right) 49
Spatial performance patterns discovered using k-means, shown as radial sector maps
of tile probability per sector (Multi-layer KPI CAE) in the top row. The bottom
row shows example mobile cells from each cluster, using the image corresponding
to throughput dominance. L oo 50
Clustering results on FEATHER embeddings visualized with PCA (left), t-SNE
(center), and UMAP (right), using k-means (top row), DBSCAN (middle row),
and Spectral clustering (bottom row). L0 51
Examples of clusters corresponding to isomorphic graph structures discovered by
DBSCAN (FEATHER). Each row corresponds to a different cluster and shows the
graph structure along with a few examples. 53
Clustering results on VGAE embeddings visualized with PCA (left), t-SNE (center),
and UMAP (right), using k-means (top row), DBSCAN (middle row), and Spectral
clustering (bottom row).o 54
Average number of tiles per mobile cell per cluster for 10 (top row), 20 (middle row),
and 30 (bottom row) clusters produced by k-means (left) and Spectral clustering
(right) (DGLC). 57
Radial sector maps of bad throughput probability for Cluster 6 (k-means; top row)
and Cluster 4 (Spectral clustering; bottom row), along with two example mobile
cells (DGLC). 58

Table of Contents

Al

A2

A3

A4

A5

A6

AT

A8

Spatial performance patterns discovered using DBSCAN on embeddings from the
Pretrained CNN, shown as radial sector maps of bad throughput probability per
sector for each cluster (1-6).
Spatial performance patterns discovered using DBSCAN on embeddings from the
Pretrained CNN, shown as radial sector maps of bad throughput probability per
sector for each cluster (7-18). Lo
Spatial performance patterns discovered using Spectral clustering on embeddings
from the Pretrained CNN, shown as radial sector maps of bad throughput proba-
bility per sector for each cluster (1-12).
Spatial performance patterns discovered using Spectral clustering on embeddings
from the Pretrained CNN, shown as radial sector maps of bad throughput proba-
bility per sector for each cluster (13-24). L.
Spatial performance patterns discovered using Spectral clustering on embeddings
from the Pretrained CNN, shown as radial sector maps of bad throughput proba-
bility per sector for each cluster (25-30).
Original images from the test set and their reconstructions produced by the
single-KPI CAE model with a hidden dimension of 64 and batch size of 16.

Original images from the test set and their reconstructions produced by the
multi-KPI CAE model with a hidden dimension of 64 and batch size of 16.
Ilustration of Steps 1 and 2 of the preliminary experimental setup.

73

74
76

Table of Contents

1 Introduction
2 Related work

3 Theoretical Background

3.1 Convolutional Neural Network
3.2 Convolutional Autoencoder
3.3 Graphs.
3.4 Graph Neural Network
3.5 Graph Convolutional Network,
3.6 Graph Autoencoder
3.7 Variational Graph Autoencodero
3.8 Deep Graph-Level Clustering (DGLC)
3.9 FEATHER e
3.10 Clustering algorithms
3.10.1 k-means algorithm (Lloyd’s algorithm)
3.10.2 DBSCAN (Density-Based Spatial Clustering of Applications with Noise) .
3.10.3 Spectral clustering Lo
3.11 Clustering performance evaluation
3.11.1 Silhouette Coefficient
3.11.2 Calinski-Harabasz Index
3.11.3 Davies-Bouldin Index
3.11.4 Adjusted Rand Index
3.11.5 Adjusted Mutual Information Score
Data
4.1 Performance metrics
4.2 Data preparation
4.3 Exploratory data analysis Lo
Methods
5.1 Data representation. Lo
5.1.1 Image-based representation L.
5.1.2 Graph-based representation L.
5.2 Embedding techniques

5.2.1 Methods for image-based representations

© © 0o N o ot G

10
10
13
14
14

15
16
16
17
18
18
19

20
20
22
23

Table of Contents

5.2.2 Methods for graph-based representations
5.3 Clustering algorithms
5.4 Evaluation
6 Results
6.1 Image-based representations Lo
6.1.1 Pretrained CNN
6.1.2 Convolutional Autoencoder
6.2 Graph-based representations o
6.2.1 FEATHER
6.2.2 (Variational) Graph Autoencoder
6.2.3 DGLC e
7 Discussion
7.1 Summary of results
7.2 Future directions
8 Conclusion
Bibliography

A Appendix

A1l Pretrained CNN oo
A.1.1 Radial sectormaps
A.2 Convolutional Autoencoder
A.2.1 Hyperparameter tuning
A.3 Graph Autoencoder
A.3.1 Hyperparameter tuning
A.4 Variational Graph Autoencoder
A.4.1 Hyperparameter tuning
A5 Deep Graph Level Clustering (DGLC)
A.5.1 Hyperparameter tuning
A.6 Satellite images

36
37
37
44
49
49
52
95

59
99
60

62

63

Il Introduction

Mobile networks are complex infrastructures that provide wireless connectivity to mobile users
at different locations. They are composed of thousands of mobile cells spread across different
geographical areas, each served by a base station. Formally, each mobile cell is determined by its
location (i.e., the physical site), sector (i.e., the beam direction), and the band of radio frequencies
it uses to communicate with the user equipment. Typically, neighboring cells are configured to
use different bands of radio frequencies, to avoid interference. As users move, their devices are
handed over between neighboring cells to maintain continuous service without interruption.

To ensure good performance and reliable coverage, mobile network operators (MNOs) need
to continuously monitor and manage their networks. MNOs collect measurements from the
user devices and the network itself on quality indicators such as signal strength, signal-to-
interference-plus-noise ratio (SINR), and throughput. The collected data can be used to adjust
the configuration parameters of the network in order to improve the performance. For example,
at the level of a mobile cell, network operators can adjust configuration parameters from handover
thresholds (i.e., when the cell transfers the connection to a neighboring cell as the user moves) to

transmission power and antenna tilt.

The process of adjusting network configuration parameters to optimize performance is known as
network tuning. Network tuning relies on the expertise of radio network engineers, who analyze
performance data to detect and resolve radio issues. Engineers inspect a mobile cell, or a group
of neighboring mobile cells, by manually reviewing performance indicators across the coverage
area. To support this process, Swisscom has developed a data processing and visualization tool
that converts raw data into interactive visualizations of performance metrics. However, tuning
still remains time-consuming and repetitive, making it inefficient at scale.

One challenge to address is the issue of repetitiveness. Swisscom manages an infrastructure of
tens of thousands of mobile cells, so engineers often encounter the same or similar scenarios
repeatedly. One example is the back-lobe phenomenon, where the antenna partially radiates in
the opposite direction of the main lobe (the beam direction). This is undesirable as it wastes
energy and can cause interference. Another instance is the appearance of coverage zones with
poor performance at various distances and directions from the mobile cell site, such as in front
and back, or at a specific angle. In fact, many spatial performance patterns can exist, and each

Introduction Chapter 1

can be potentially linked to a specific radio issue. Hence, it would be useful to automatically
detect and group mobile cells based on their performance patterns. By clustering together mobile
cells with similar characteristics, network engineers can analyze entire clusters simultaneously,
determine whether there is a shared problem, and potentially apply a common solution. This
would lead to workload reduction and increased efficiency, as the manual case-by-case task would
be turned into a semi-automated batch process. In turn, this process would also improve the
customer experience for the mobile users, as it would lead to faster problem resolution or even
detection of issues that might have otherwise been missed.

A naive approach to solving the described issue would be to precisely define the classes of patterns
to be detected and implement automated checks to identify them. However, this approach assumes
that all possible patterns are known in advance, which is not the case. Hence, the problem is
a natural candidate for a solution using machine learning. Specifically, unsupervised machine
learning techniques can be used to partition the set of mobile cells into different clusters based on
their similarity. These techniques can also help identify patterns that were previously unknown
or might have gone unnoticed by network engineers.

This thesis explores various representation methods for mobile cell data, including image-based
and graph-based representations. Additionally, it compares different approaches for learning
compact embeddings using machine learning, from pretrained convolutional neural networks and
convolutional autoencoders to traditional graph representations learning methods and graph
autoencoders. Moreover, it uses several clustering algorithms to discover meaningful clusters, such
as k-means, DBSCAN and Spectral clustering. Given the unsupervised nature of the problem,
this thesis also proposes an evaluation pipeline consisting of multiple visualizations (e.g., PCA,
t-SNE, UMAP projections, and custom heatmaps) and metrics (e.g., clustering coefficients, Rand
index, and mutual information) to provide insights into the quality of the results. Finally, it
incorporates expert feedback from network engineers at Swisscom on the identified issues.

The rest of this thesis is organized as follows. Chapter 2 reviews existing research literature on
methods for grouping mobile cells based on their performance characteristics, to uncover common
patterns or to support configuration. Chapter 3 discusses the relevant theoretical background from
machine learning architectures to clustering algorithms and clustering performance evaluation
metrics. Chapter 4 describes the dataset and the data preparation process. Chapter 5 introduces
the methods used to obtain clusters of mobile cells with similar performance characteristics,
including the choice of data representation, embedding techniques and clustering algorithms.
Finally, Chapter 6 and Chapter 7 showcase the results and discussion respectively.

] Related work

This section reviews research literature on methods for clustering mobile cells based on their
performance characteristics, to uncover common patterns and to support cell configuration and
fault detection.

(Raivio et al. 2003) propose two clustering approaches based on self-organizing maps to group
3G mobile cells using base station parameters and call quality information. (Gomez-Andrades
et al. 2016) present an automatic diagnosis system based on self-organizing maps and Ward’s
hierarchical clustering to group 4G/LTE cells exhibiting same fault causes, using a small set of
their key performance indicator (KPI) metrics. Similarly, (Liu et al. 2019) introduce an anomaly
detection framework based on key quality indicator (KQI) data reflecting cell performance in terms
of quality of experience (QoE), using self-organizing maps and k-medoids clustering. Furthermore,
(Wang and Ferrts 2021) propose a 2-stage clustering algorithm, combining self-organizing maps
and k-means, to cluster similar 4G /LTE mobile cells based on their operation, administration
and maintenance (OAM) properties. Finally, (Zhang et al. 2019) introduce a cellular radio access
system enhanced with deep learning to monitor cell KPIs, predict anomalies, analyze root causes,
and self-heal. For the root cause analysis, agglomerative hierarchical clustering is applied to
features extracted from a synthetic dataset of cell KPIs using an autoencoder, in order to group
cells with similar issues prior to the self-healing phase.

Another area of research focuses on clustering mobile cells based on the temporal variations of
their KPI metrics, which are time series reflecting the environmental and performance character-
istics. (Li, Francini, and Magli 2023) develop a novel clustering approach designed to capture
temporal dynamics, using first-order difference sequences and distribution summarization as
feature extractors, together with k-means. (Lu et al. 2022) present a hybrid time series clustering
method that uses statistical and temporal data with k-medoids. Similarly, (Mazguta, Krol, and
Jabloniski 2024) introduce a new algorithm that combines dynamic time warping and spectral
clustering to cluster 5G mobile network performance data.

In a different manner, (Shibli and Zanouda 2024) incorporate satellite imagery of the cell coverage
area to develop a forecasting model for predicting network KPIs. Specifically, cells are clustered
using k-means based on the geographical similarity of their coverage areas, and a separate KPI
prediction model is trained for each cluster.

Related work Chapter 2

To the best of our knowledge, all of the aforementioned research works rely on aggregated
performance metrics. That is, the datasets used mainly contain cell-level aggregations, such
as average throughput or average SINR, computed over all observations collected from user
equipment connected to the mobile cell of interest, regardless of their specific location. The
novelty of the work presented in this thesis lies in the granularity of the data. Specifically, as
described in detail in Chapter 4, the data is aggregated over fixed 200 meter by 200 meter regions,
enabling a finer-grained analysis. As a result, it is possible to pinpoint exactly which part of
a mobile cell’s coverage area is problematic, and to have cells grouped based on these spatial
performance patterns. Finally, this thesis explores deep learning methods to learn embeddings
from the mobile cell data, which is a different approach to using traditional machine learning
techniques such as self-organizing maps.

B8 Theoretical Background

This section outlines the relevant theoretical background needed to understand the methods and
results presented in this thesis. These concepts include deep learning architectures suited for
images (e.g. convolutional neural networks and convolutional autoencoders) and graphs (e.g.
graph neural networks, graph convolutional networks and graph autoencoders). Furthermore, a
few clustering algorithms are presented (i.e., k-means, DBSCAN and Spectral clustering), together
with clustering performance evaluation metrics (e.g., Silhouette coefficient, Calinski-Harabasz
index and more).

3.1 Convolutional Neural Network

Convolutional neural networks (CNNs) (Fukushima 1980; LeCun et al. 1989) are feed-forward
neural networks used for object detection, image classification and more. The CNN architecture
is composed of three main types of layers: convolutional, pooling and fully-connected.

Convolutional layer The convolutional layer is the main component of a convolutional neural
network. The parameters of the convolutional layer are a set of learnable convolution kernels,
also known as convolution filters. Given an input of size H x W x C' (height, width, number of
channels), a convolution filter of size F' x F' x C' is applied across the input in a sliding manner.
Specifically, the filter shifts by a stride S, performing the convolution operation until it covers
the entire input. This produces an output called a feature (or activation) map, which is passed
through a non-linear activation function (e.g., ReLU, LeakyReLU, ELU, or Sigmoid (Dubey,
Singh, and Chaudhuri 2022)). The filter size F' usually takes odd values smaller than 10, while S
is often set to 1. Using a larger value of S has a similar effect on the shape of the activation map
as the pooling operation described below.

Pooling layer The pooling layer performs dimensionality reduction and is usually applied after
a convolution layer. It slides a filter over the input, but unlike with convolutional layers, the
filter has no learnable parameters and performs a fixed aggregation. Common types include max
pooling, which selects the highest value in the filter area, and average pooling, which calculates

Theoretical Background Chapter 3

Input Convolution Pooling Fully-connected
layers

Figure 3.1: Architecture of a convolutional neural network.

the average of the covered pixels.

Fully-connected layer Fully-connected layers are located at the end of the CNN architecture
and perform the classification task using the features extracted by earlier layers. The output
from the convolutional and pooling layers is flattened and passed to the fully-connected layers.
As the name suggests, each input element is connected to every neuron in the layer, and each
neuron in one layer connects to all neurons in the following layer.

An overview of the entire CNN architecture is shown in Figure 3.1. In general, multiple convo-
lutional and pooling layers can be stacked sequentially. With each added layer, the complexity
of the model increases. Popular convolutional neural network architectures include the LeNet
(Lecun et al. 1998), AlexNet (Krizhevsky, Sutskever, and G. E. Hinton 2017), VGGNet (Simonyan
and Zisserman 2015), ResNet (He et al. 2015) and more.

3.2 Convolutional Autoencoder

Convolutional autoencoders (CAEs) are neural network autoencoders that use convolutional
layers for both encoding and decoding, which makes them suitable for handling image data.
The autoencoder architecture consists of two main parts: an encoder and a decoder. Given a
dataset X = {x1,X2...X,} of n images, the encoder fs compresses each x; € RT*WxC into a
lower-dimensional representation (i.e., embedding) h; € R? as:

by = fo(x;). (3.1)

Theoretical Background Chapter 3

The decoder g4 attempts to reconstruct the original input from the compressed representation h;
as:

yi = go(hi) = g4(fo(x:)), (3.2)

RHXWXC

where y; € is the reconstruction.

The parameters of the autoencoder are optimized by minimizing the reconstruction loss, usually
defined as the sum of the mean squared errors (MSE) between the input x; and the reconstructed
output yj;:

1 — 1 &
L= 3l =il = = 3 i — o alx) 5. (33)
=1 i=1

In CAEs, both the encoder and decoder are composed of convolutional layers, with the decoder

using transposed convolutions, as illustrated in Figure 3.2.

28x28x1

14x14x32 14x14x32

1152 1152
4 v

7x7x64 N B 7x7x64
3x3x128 10 3x3x128

P
4
Conv3 Reshape

Conv2 stride=2 . / DeConv3
stride=2 « J stride=2

Conv1 DeConv2
stride=2 stride=2

DeConv1
stride=2

Figure 3.2: Architecture of a convolutional autoencoder (CAE) (Guo et al. 2017).

3.3 Graphs

Definition 1 (Graph) A graph is a tuple G = (V, E), where V is a finite set of vertices (or
nodes), and E C'V x V is a set of edges. An edge (u,v) € E represents a connection between
vertices u and v.

The number of nodes and edges in a graph G are denoted as |V| = ng and |E| = ng, respectively.
A graph is called directed if the edges are ordered pairs, i.e., (u,v) # (v, u). If edge direction is
not relevant, the graph is undirected.

Theoretical Background Chapter 3

The neighbourhood of a vertex v € V is the set of adjacent vertices:

Nw)={ueV](v,u) € E}.

Definition 2 (Adjacency Matrix) The adjacency matriz of a graph G = (V, E) is a matrix
A € R"G*"G defined as:

Ay = (3.4)

0 otherwise.

{1 Zf (’UZ',UJ') S E,

Definition 3 (Labeled Graph) A graph G = (V, E) is labeled if there exists a labeling function
[:V — X that assigns to each vertex v € V' a label from a finite alphabet 3.

Definition 4 (Attributed Graph) A graph G = (V, E) is attributed if each vertex v € V is
associated with a feature vector x, € R%, where d is the dimensionality of the attribute space.

3.4 Graph Neural Network

Graph Neural Networks (GNNs) are neural network architectures designed to process graph-
structured data. The main idea behind GNNs is to iteratively update node representations by
aggregating information from local node neighborhoods via the message passing mechanism.

Let G = (V, E) be a graph with node features X € R¥*P where N is the number of nodes and

D is the input feature dimension. A typical GNN layer updates the representation th) of node v
at layer [as:
h{) = COMBINE® (h{!=), AGGREGATE" ({h{~V: ue N(v)})), (3.5)

where N (v) denotes the set of neighbors of node v, AGGREGAT E® is an aggregation function
(e.g., mean, sum, max pooling, or attention-based aggregation), and COMBINEW is a combination
function that can be either linear or non-linear (e.g., sigmoid, ReLU). h? is initialized as x,, the
feature vector of node v.

GNNs can be applied to various tasks including node classification, link prediction, and graph
classification. Variants of GNNs differ in how they design the aggregation and update mechanisms.
Examples include Graph Convolutional Networks (Kipf and Welling 2017) and Graph Attention
Networks (Velickovié¢ et al. 2018).

Theoretical Background Chapter 3

3.5 Graph Convolutional Network

Graph convolutional networks (GCNs) (Kipf and Welling 2017) are a specific type of GNNs that
extend the convolution operation to graphs. The GCN layer updates node representations using
the following rule:

HI) = 5 (D2 AD :HOWO) (3.6)
where:

e H®O is the matrix of node features at layer I, with H® = X,

e A=A +1is the adjacency matrix with added self-loops,

D is the diagonal degree matrix of A,
e W is the learnable weight matrix for layer [,

e o is an activation function, typically ReLLU.

3.6 Graph Autoencoder

Graph autoencoders (GAEs) (Kipf and Welling 2016) are unsupervised neural network architec-
tures designed to learn low-dimensional node embeddings from graph-structured data. A GAE
consists of an encoder that maps nodes to latent representations and a decoder that reconstructs
the graph structure (i.e. the adjacency matrix) from these embeddings.

Let G = (V, E) be an undirected, unweighted graph with adjacency matrix A and node features
X. The encoder of the GAE architecture is often structured as a graph convolutional network
(GCN), which encodes the input as:

Z = GCN(X, A), (3.7)

where Z is the matrix of the latent node representations z;, with dimensions N x F. N is the
number of nodes in the graph (i.e., |V]), and F' is the dimension of the latent space.

On the other hand, the decoder typically reconstructs the adjacency matrix A using an inner
product between node embeddings:

A =o(22"), (3.8)

Theoretical Background Chapter 3

where o is the sigmoid function. The model is trained by minimizing the binary cross-entropy
loss between the original and reconstructed adjacency matrices.

3.7 Variational Graph Autoencoder

Variational graph autoencoders (VGAEs) (Kipf and Welling 2016) extend GAEs by introducing a
probabilistic framework based on the variational autoencoder (VAE) architecture (Diederik P
Kingma and Welling 2022; Rezende, Mohamed, and Wierstra 2014). Instead of deterministic
node embeddings, VGAEs learn a distribution over latent variables for each node.

The encoder outputs the parameters pp = GCN, (X, A) and log 0 = GCN4 (X, A) of the posterior
distribution:

N N
A2 | X, A) = [[alz | X, A) = [[V(2 | i, diag(0?). (3.9)
1=1

=1

The decoder is the same as in GAEs, using the inner product to estimate:

N N
p(A 1 2) =[] [p(4i | 2.2)). (3.10)

i=1j=1

where p(A4;; = 1| z;,2;) = o(z] z;).

The model is trained by minimizing the variational lower bound, w.r.t. the parameters W of the
GCN encoder:

£ = By logp(A | Z)] - KLIg(Z | X, A) | p(Z)), (3.11)
where p(Z) is a Gaussian prior:

N N

p(@) =[] p(z) = [[V(@ | 0.1). (3.12)

3.8 Deep Graph-Level Clustering (DGLC)

Let G = {G1,Ga,...,GN} be a set of n graphs, where each graph G; = (V;, E;) is associated with
node features X;, and let X = {X;,Xo,...,X,,} denote the set of all node features. The goal of
the graph clustering problem is to partition G into disjoint subsets such that graphs within the

10

Theoretical Background Chapter 3

same subset are similar, while graphs in different subsets are dissimilar (Cai et al. 2023). The
similarity is based on discovering and matching common substructures between the graphs in G.

DGLC (Cai et al. 2023) proposes an end-to-end framework to learn the graph-level embeddings
and perform clustering simultaneously, by optimizing the following objective:

L(¢,0) := Lr(96(X,9), X, G) + Lejo(96(X, G))- (3.13)

where, £, is the representation learning objective and Lg is the clustering objective. The approach
uses a graph isomorphism network g4(X,G) to learn graph-level representations by maximizing
the mutual information (MI) between representations of entire graphs and representations of
patches (i.e. substructures, such as nodes, edges or triangles) as introduced by (Sun et al. 2020).
Specifically, let ¢ denote the parameters of g4(X,G). After the first [layers of the graph neural
network, the input graph G is encoded into a set of node representations {hl(-l)}ﬁjl‘, where |G}
denotes the number of nodes in Gj. The approach summarizes features from all depths into patch

representations by concatenating them for each node, i.e.:

= CONCAT({h{"}£,), (3.14)

where L is the number of layers g4. To obtain a global representation, a readout function is
applied to the resulting patch representations:

H,(G;) = READOUT ({h},}|]). (3.15)
The mutual estimator maximizing the M| over G can be defined as:

|G
Iy (bl Hy(G))). (3.16)

‘@>
<,
||

%Zea

i

As formulated by (Nowozin, Cseke, and Tomioka 2016), /4, can be expressed as:

Iy (D5(Gy), Hy(Gy)) := Ep| — sp(—Ty(hiy(z); Hy(2)))] — Ep, 5 [sp(Ty (hiy(z'); Hy(2')))],
(3.17)

where Ty, is a discriminator parameterized by a neural network with parameters ¢, P denotes the
empirical probability distribution over the input space of G, = is a positive input sample, and
2’ is a negative input sample drawn from P = P. The function sp(z) = log(1 + e*) denotes the

11

Theoretical Background Chapter 3

softplus function.

Building on the work of (Sun et al. 2020), DGLC incorporates a clustering multilayer perceptron
(MLP) (Rumelhart, G. E. Hinton, and Williams 1986) network fy, parameterized by 6, which is
connected to the graph-level representations produced by the previously described architecture.
Specifically,

= fo(Hy(G,)) € R% (3.18)

is the learned cluster embedding for G;. As proposed by (Xie, Girshick, and Farhadi 2016), the
idea is to simultaneously learn a set of C cluster centers {u,} | and the parameters 6 of the
mapping function fy, which projects the data points (in this case, graph-level representations) into
cluster embeddings z;. This is achieved by iterating between soft assignment () and minimizing
the Kullback-Leibler (KL) divergence to an auxiliary distribution P. For each cluster embedding
z; and cluster centroid p,., the soft assignment probability gj. is computed as

o = (14 llzj = pef?) 7!
je = ~C -
o=+ 7 — pel?)~!

(3.19)

(Xie, Girshick, and Farhadi 2016) and (Cai et al. 2023) define the auxiliary distribution P as

Pic = quc/ Zj djc
jc ZC/ q]zc,/ Zj qje

(3.20)

Hence, the KL divergence is

KL(P || Q)= ZZPJCIOg p”- (3.21)

j=1c=1

Finally, the objective optimized by DGLC, shown in Equation 3.13, for a batch of graphs G C G
of size Ny is given by:

Luaten(¢,1,0) = — ‘G‘ZIM hi, Hy (G +22pjclog (3.22)

j=1 e=1 qJC|¢7

Lrig,y Lejg,0

12

Theoretical Background Chapter 3

3.9 FEATHER

Let G = (V, E) be an undirected attributed graph with n nodes, each associated with a feature
vector x, € R*, and let the matrix of all node features be denoted by X € R"**. FEATHER
(Rozemberczki and Sarkar 2020) defines characteristic functions to describe the distribution of
features in the neighborhood of a node, using random-walk based affinity weights. For a fixed
scale r € N, the r-step normalized random walk matrix is given by AT, where A = DA is the
row-normalized adjacency matrix.

Let (-)(1), e O©®) € R? be the evaluation point vectors, one for each feature dimension. For a
node u € V, a feature index j € {1,...,k}, and an evaluation point 6 € R, the method defines
the r-scale random walk weighted characteristic function as:

o)=Y Ay, v (3.23)

weV

The real and imaginary components are given by:

e (0)] = > AL, cos(0Xy), Im =Y A, sin(6X,) (3.24)
weV weV

For d evaluation points ®) = (09), .. ,Hc(lj)), the method evaluates:

Re[p/™(@9)] e RY, Im[¢{")(©W)] € RY, (3.25)

with entries

[RGW(” eu) } Z/A cos(])ij) [Im[¢(JT eu } Z/A Sm(09X,)
we we
(3.26)

Each pair of real and imaginary outputs forms a 2d-dimensional descriptor per feature and scale.
By concatenating across all k features and all scales r = 1,..., ryax, the method obtains a final
embedding z, € R?#drmax for each node u € V.

To derive a graph-level representation, the node embeddings are aggregated using a permutation-
invariant function such as the mean:

= % >z, (3.27)

ueV

13

Theoretical Background Chapter 3

This representation is invariant to node permutations, robust to small perturbations in individual
node features and it can be directly used in downstream tasks such as graph classification or
clustering.

3.10 Clustering algorithms

Clustering is a type of unsupervised machine learning technique used to group similar data points
into distinct subsets or clusters, based on their features. This section presents k-means, DBSCAN
and Spectral clustering.

3.10.1 k-means algorithm (Lloyd’s algorithm)

Given a dataset D of n data points and a set of k initial centroids ugl), ,ugz), ey u,(:) , the k-means

algorithm (Lloyd 1982) is an iterative process consisting of the following alternating steps:

1. Assignment step: Assign each data point x; € D to the nearest centroid:

®) : ()2
¢, =arg min |x; — p; 3.28
7 g]E{l,,k)} || ? I‘I’J H 9 ()
where cz(t) is the cluster assignment for point @; at iteration ¢, and || -|| denotes the Euclidean
distance.

2. Update step: Recompute the centroids as the mean of the data points assigned to each
cluster:)
t+1
u§~)= N0 Z L (3.29)
L2 BN O
mZECj

where C](.t) denotes the set of data points assigned to cluster j at iteration ¢, and ng-t) is the

number of points in the cluster.

These steps are repeated until convergence, typically when the centroids no longer change
significantly or a predefined number of iterations is reached.

3.10.2 DBSCAN (Density-Based Spatial Clustering of Applications with
Noise)

DBSCAN (Ester et al. 1996) is a density-based clustering algorithm that groups together points
in close proximity, while marking as outliers points found alone or with few neighbors. It requires
two parameters:

14

Theoretical Background Chapter 3

e ¢: The maximum distance between two points for one of the points to be considered in the
neighborhood of the other.

e min_samples: The minimum number of points in the e-neighborhood of a point required to
start a cluster. In other words, this is the minimum number of points needed to form a
dense region.

Based on the parameters, DBSCAN categorizes data points into three different types:

e Core points: A point P is considered a core point there are at least min_samples points
(including P) in its e-neighborhood.

e Border points: A point @ is labeled as a border point if it is in the neighborhood of a core
point, but it does not itself have enough neighbors to be considered a core point.

e Noise points (outliers): A point R is considered an noise point if it is neither a core nor a
border point.

Clusters are formed by connecting core points that are density-reachable, meaning that there
exists a chain of core points where each point is within the e-neighborhood of the next. Border
points are then assigned to the nearest core point’s cluster.

The advantage of DBSCAN is that the number of clusters does not need to be specified in
advance, unlike in k-means or Spectral clustering. Additionally, the algorithm can find clusters of
arbitrary shapes and identify and handle outliers. One disadvantage is that DBSCAN is not fully
deterministic with respect to border points that can be reached from multiple clusters, as their
assignment depends on the order in which data points are processed.

3.10.3 Spectral clustering

Spectral clustering is an unsupervised algorithm that partitions data based on the structure of a
similarity graph derived from pairwise relationships between samples. Given a set of data points
X1,X2,...X, and a notion of similarity s(x;,x;) > 0 between points x; and z;, the algorithm

performs the following steps:

1. Construct a similarity graph G from the data, where each node corresponds to a single
data point. The graph G is weighted, i.e., each edge is assigned a weight w;; reflecting
the similarity between nodes v; and v;. There are three common ways to construct the
similarity graph: e-neighborhood graphs, k-nearest neighbor graphs and fully connected
graphs as presented in (Luxburg 2007). The e-neighborhood similarity graph connects all
points whose pairwise distances are less than ¢, resulting in an unweighted graph. The
k-nearest neighbor graph connects each note to its k-nearest neighbors, weighting the edges

15

Theoretical Background Chapter 3

by the similarity of the vertices. Finally, a fully connected graph, connects all vertices with
weights given by a similarity function as the Gaussian kernel:

—|X; — X5 2
s(x4,%x5) = exp(”202JH). (3.30)

2. Compute the degree matrix D and weighted adjacency (i.e., similarity) matrix W, and
define the unnormalized graph Laplacian as:

L=D-W. (3.31)
Alternatively, the normalized Laplacian can be used:
Lyym =1 — D™ Y2WD~1/2, (3.32)

resulting in two variations of the algorithm proposed by (Shi and Malik 2000) and (Ng,
Jordan, and Weiss 2001).

3. Compute the first k£ eigenvectors ui, us,...ug of L, where k is the number of clusters to
construct. These eigenvectors are stacked column-wise to form the matrix U € R?*F.

4. Apply the k-means algorithm to cluster the rows of U.

Spectral clustering is effective for identifying non-convex clusters and structures that are not
easily separable in the original feature space.

3.11 Clustering performance evaluation

This section presents a few clustering evaluation metrics including the Silhouette coefficient, the
Calinski-Harabasz index, the Davies-Bouldin index, the adjusted Rand index and the adjusted
mutual information score. Intuitively, better scores indicate non-overlapping, well-separated and

dense clusters.

3.11.1 Silhouette Coeflicient

The silhouette (Rousseeuw 1987) is a measure of how similar an object is to its own cluster
compared to other clusters.

Given a dataset D of n points assigned to k clusters (Cy,Ca,...,Ck), let n; be the number of
points in C;. The silhouette value of a data point x € C;, is defined as

_b(x) —a(x)
s(x) = max{a(x),b(x)}’

(3.33)

16

Theoretical Background Chapter 3

where

a(x) Z d(x,y) (3.34)

is the average distance between the sample x and all other points in the cluster C;, and

b(x) = min — d(x 3.35
2 Z) (3.35)

is the average distance between the sample x and all other points in the nearest cluster C; # C;.

The silhouette coefficient for a set of samples is defined as the average of the silhouette values of
the individual samples from the set. The coefficient can take values between —1 and 1. A value
close to 1 indicates that the data-points are well-clustered, with a good separation from other
clusters, while a value close to —1 indicates incorrect clustering.

3.11.2 Calinski-Harabasz Index

The Calinski-Harabasz index (Caliniski and JA 1974), also known as the Variance Ratio Criterion,
measures clustering quality by comparing the between-cluster dispersion to the within-cluster
dispersion, with higher values indicating better-defined clusters.

Given a dataset D of n points assigned to k clusters (C1,Ca,...,Ck), let p; denote the centroid
of the i-th cluster, n; the number of points in C;, and p the centroid of all points in D. The
Calinski-Harabasz index is defined as

BCSS n—k
T WCSS k—1' (3.36)
where
k
BCSS = > niflu; — il (3:37)
=1

is the weighted sum of the squared distances between each cluster centroid and the centroid of all
points in the dataset, and

k
WESS =) ") lx — p,)? (3.38)

=1 XGCZ'

is the sum of the squared distances between the data points and the respective cluster centroids.

17

Theoretical Background Chapter 3

3.11.3 Davies-Bouldin Index

The Davies-Bouldin index (Davies and Bouldin 1979) is a metric used to evaluate the quality of
clustering by measuring the average similarity ratio of each cluster with the cluster that is most
similar to it, where a lower index indicates better clustering.

Given a dataset D of n points assigned to k clusters (Cy,Ca,...,Ck), let p,; denote the centroid of
the i-th cluster and n; the number of points in C;. The Davies-Bouldin index is defined as

1 u S; + S5
DB = — max ——= 3.39
k zz; J#i d@j ()
where 1
si= 3 Il (3.0

v x€eC;

is the average distance between each point in C; and u;, and

dij = [l — mjl- (3.41)

is the distance between cluster centroids p; and p;.

3.11.4 Adjusted Rand Index

The Rand inder (Rand 1971) is a measure of similarity between the cluster assignments given
by two clustering approaches. Given a dataset X = {x1,x9,...x,} of n data points, and two
partitions: A = {Aj, Ay, ...Ax} of k subsets (clusters), and B = {Bj, Ba,...B;} of | subsets
(clusters), let:

e s be the number of pairs of data points in X that are assigned to the same subset (cluster)
of A and the same subset (cluster) of B. In other words, s is the number of pairs of points
that are clustered together by both approaches.

e d be the number of pairs of data points in X that are assigned to different subsets of A and
different subsets subsets of B.

The Rand index (RI) is defined as:

RI =

(3.42)

where (’2‘) is the total number of pairs of points in X. It can take values between 0 and 1 (perfect

18

Theoretical Background Chapter 3

agreement). However, the Rand index does not account for chance; that is, random assignments
can sometimes result in high RI values, which can be misleading. The adjusted Rand index (ARI)
mitigates this issue and it is defined as:

RI — E(RI)

ARl = max(RI) — E(RI)’

(3.43)

where E(RI) is the expected value of the Rand index for random cluster assignments. Hence, the
ARI takes values between -0.5 and 1. A negative ARI score means that the assignment is worse
than random, while a value of 1 indicates perfect agreement.

3.11.5 Adjusted Mutual Information Score

The adjusted mutual information score (Vinh, Epps, and Bailey 2009) is an adjusted version
of the mutual information, which can be used to compare the cluster assignments given by two
clustering approaches. Given a dataset X = {x1,z9,...z,} of n data points, and two partitions:
A ={A1, Ay, ...Ai} of k subsets (clusters), and B = {By, Ba, ... B;} of | subsets (clusters), let:

e Pry(i) = |ni‘ be the probability that a data point is assigned to cluster A;.
e Prp(j) = IB—nj‘ be the probability that a data point is assigned to cluster B;.

e Prap(i,j) = lA D55l be the probability that a data point is assigned to A; in A and B; in
B.

The mutual information (MI) between the two clustering assignments (i.e., partitions) is defined
as:

Prap(i,7)
;;ng i,7)log ————— Pra(i) - Pra(); (3.44)

Similarly, the adjusted mutual information (AMI) score can defined as:

MI — E(MI)

AMI = max (MI) — E(MI)’

(3.45)

where E(MI) is the expected mutual information between two random clustering assignments.

19

A Data

For the purposes of this thesis, a dataset of measurements from 10,308 outdoor 5G mobile cells
was collected from Swisscom’s live network. The measurements include performance and quality
indicators such as throughput, signal strength, and interference recorded directly as experienced by
the users. Rather than aggregating the measurements at cell level, the geographical area covered
by each cell is divided into fixed 200 meter by 200 meter regions, over which the measurements
are averaged and reported. These fixed-size regions are referred to as tiles, and in total, the
dataset contains 150,049 of them. It is important to mention that one tile can have aggregated
measurements for more than one different cell. This is because multiple cells can serve the same
geographical region, with different users connected to different cells. In this format, the data
provides finer-grained insights into each cell’s performance and can be used to detect localized

issues within a single cell.

4.1 Performance metrics

The dataset includes a few key performance (KPIs) and quality indicators (KQIs), which describe
signal quality and user experience.

Throughput The throughput can be defined as the rate at which data is successfully transmitted
over a communication channel within a given period of time. The throughput experienced by
the end users is aggregated per tile for each cell. However, the measure used by Swisscom for
performance evaluation is not the raw number, but rather the ranking. For each tile, the cells
serving it are ranked from best to worst based on the average throughput of their users. If the
cell is among the top five cells serving a tile in terms of user throughput, its performance is
considered good. Hence, the throughput dominance measure reflects the cell’s competitiveness in
an area, and it can take binary values (i.e. good and bad, as shown in Figure (4.1)).

Signal-to-Interference-plus-Noise Ratio The signal-to-interference-plus-noise ratio (SINR)
is defined as the ratio of the power of the signal of interest to the sum of the power of interference
and noise. It is typically measured in decibels (dBs) and quantifies the quality of the received

20

Data Chapter 4

Throughput dominance

Cell is among top S cells serving a tile in terms of user
throughput.

SINR (dB) RSRP (dBm) RSRQ (dB)

Excellent more than 20 more than -85 more than -10

Good 13 to 20 -94 to -85 -15to -10

Medium 0to 13 -107 to -94 -20 to -15

Figure 4.1: Reference table for throughput, SINR, RSRP and RSRQ

signal. Figure (4.1) shows the SINR ranges considered weak, medium, good, and excellent,
respectively.

Reference Signal Received Power The reference signal received power (RSRP) is defined
as the average power of the received reference signals in the downlink wireless channel of a
mobile network. The strength of the received reference signals is used for channel estimation and
handover decisions, ensuring the user is connected to the cell with the strongest signal power at a
given location. The RSRP is measured in decibel-milliwatts (dBms), and its ranges are shown in
Figure (4.1).

Reference Signal Received Quality The reference signal received quality (RSRQ) is defined
as the ratio between the received signal strength indicator (RSSI) and the reference signal received
power (RSRP), scaled by the number of physical resource blocks. It is an indication of the quality
of the received reference signals and, like RSRP, it can be used to assess the connection quality
and the need for a handover. The RSRQ) is measured in decibels (dB), and its reference values
are given in Figure (4.1).

21

Data Chapter 4

4.2 Data preparation

For the purposes of this thesis, Swisscom provided multiple data sources containing information
about the recorded performance metrics and the configuration of their mobile cells. The data was
collected within the span of one week, and the observations were aggregated for each tile and cell
pair. After standard data preparation procedures, such as merging, dropping missing or invalid
values and keeping features relevant for this project, the resulting dataframe contains 10,308
unique cells and 150,049 unique tiles. Additionally, following common practices by Swisscom radio
network engineers, tiles with less than 5 observations were dropped, as well as tiles contributing
to less than 95% of the total traffic.

As mentioned before, each tile is a fixed-size 200 meter by 200 meter region, uniquely defined by
its geographical location, i.e. its latitude and longitude coordinates. One tile can have multiple
separate KPI aggregations for each of the cells serving it. Consequently, each record of the
processed dataframe describes a measurement of a tile with respect to a cell, and it contains the

following information: first, cell-related attributes such as

e Cell identifier: Unique string identifier for each mobile cell.

e (Cell location: Location of the cell specified by its latitude and longitude coordinates.
Precisely, this is the location of the physical site where the antenna is positioned.

e Cell range: Coverage radius of the cell given in meters (m).

e Beam direction: Defines the direction of the beam of the antenna relative to the north
direction in degrees (e.g., north = 0°, east = 90°, etc.).

e Sector angle: Gives the width of the beam (or circular sector) in angles. It is measured in
degrees.

and second, tile-related attributes such as

e Tile location: Location of the tile given by its latitude and longitude coordinates. Precisely,
this is the location of the center of the square.

e Distance from cell site: The distance from the tile center to the site where the antenna is
located. The distance is given in meters (m).

e Relative angle from cell site: The azimuth of the tile relative to the cell’s beam direction,

measured in degrees.

o Number of observations: Number of distinct measurements recorded from users in the tile
connected to the cell of interest.

22

Data Chapter 4

North North

* Beam direction
\V

".. Relative angle

Site ..':Sector angle Site

Figure 4.2: Cell-related (left) and tile-related (right) attributes

e Average SINR, RPSP and RSRQ: The averages of the recorded KPI measurements from
the users in the tile connected to the cell of interest.

e Throughput dominance: A categorical value describing the performance of the tile in terms
of throughput as described in Section (4.1)

A graphical overview of some of the cell-related and tile-related attributes is shown in Figure (4.1).

Although SINR, RSRP, and RSRQ are continuous measures, radio network engineers are more
concerned with whether they lie within a certain range than with their exact values. Hence, as the
final step of the data preparation process they are mapped into categorical values corresponding
to the standard levels considered weak, moderate, good and excellent given in Figure (4.2).

4.3 Exploratory data analysis

To understand the distribution of the features in the dataset, standard data description and
visualization techniques were used. One interesting result is given in Figure 4.3. The plot shows
the Pearson and Spearman correlation matrices between the average SINR, average RSRP and
average RSRQ of each tile and mobile cell pair in the dataset. The Pearson correlation coefficient
(Pearson and Galton 1895) computes the linear correlation between two datasets, while the

23

Data Chapter 4

Pearson Correlation Matrix

Spearman Correlation Matrix

1.0 1.0
Average SINR 1.00 0.49 o [Average SINR 1.00 0.48 0.73 [
0.9 0.9

-08

Average RSRP Average RSRP

-0.7

0.6
Average RSRQ [Average RSRQ
0.5

Figure 4.3: Pearson and Spearman correlation matrices for the average SINR, RSRP and RSRQ

Spearman correlation coefficient (Spearman 1904) measures the correlation between two sets of

ranks.

The average SINR and the average RSRQ have a high correlation according to the Pearson
correlation coefficient (i.e., the coefficient lies between +;0.5 and +;0.7, which (Kuckartz et al.
2013) characterizes as high) and a very high correlation according to the Spearman correlation
coefficient (i.e., the value falls between +;0.7 and =+; 1, which (Kuckartz et al. 2013) characterizes
as very high). Similarly, both the Pearson and Spearman correlation show high correlation
between the average RSRP and average RSRQ. On the other hand, the correlation between the
average SINR and the average RSRP is moderate according to both scores (i.e., in the range
between 4+ 0.3 and + 0.5. Since the average RSRQ is highly correlated with both the average
SINR and average RSRP, it will not be used in the further analysis for simplicity.

24

Methods

This section describes the methods used to obtain clusters of cells with similar performance
characteristics, including the choice of data representation, embedding techniques and clustering
algorithms. In addition, given the unsupervised nature of the problem an evaluation pipeline is

proposed.
1. Data representations 2. Embedding techniques 3. Clustering algorithms
[Pretrained CNN } [FEATHER } [k-means }
O Convolutional Graph
Autoencoder Autoencoder DESEAN
Image Graph Variational Graph Spectral clusteri
Autoencoder [FECLEERY)

DGLC

Figure 5.1: Methodology overview

Figure 5.1 provides an overview of the methodology, consisting of three main steps. Given the
dataset of mobile cell performance data described in Section 4, the first step is to find suitable
structured representations. The two natural choices considered are image-based and graph-based
representations, i.e., representing the data corresponding to each mobile cell as an image or a
graph, respectively. For each of the two data representations, the second step involves applying
an embedding learning technique to obtain compact vector representations of the mobile cells.
Specifically, for images, a pretrained CNN and a convolutional autoencoder were applied, whereas
for graphs, FEATHER, a graph autoencoder, a variational graph autoencoder, and the DGLC
framework were used.

The third and final step is the use of clustering algorithms on the resulting embeddings in order
to group similar mobile cells. Three different clustering algorithms were considered: k-means,
DBSCAN, and Spectral clustering. k-means was selected due to its simplicity, efficiency, and

25

Methods Chapter 5

Manual inspection Clustering coefficients PCA, t-SNE and UMAP
[Silhouette score } T
% | b
©
[Calinski-Harabasz index]
i i ; % [Davies-Bouldin index }
AMI and ARI scores Radial sector maps Custom metrics

Average SINR

1.0
. Bad THR Probability per Sector
Q s O 15°

Average RSRP

E
E
E

Fraction of red tiles

- . J . J

0.0

Figure 5.2: Evaluation overview

widespread use in clustering tasks, particularly when the number of clusters is known or can be
reasonably estimated. DBSCAN was included for its ability to discover clusters of arbitrary shape
and to identify noise or outliers, which is useful when the cluster structure is irregular or not
well-separated. Finally, Spectral clustering was chosen for its strength in handling non-convex
clusters.

Figure 5.2 gives an overview of the evaluation pipeline used to interpret the results. The pipeline
consists of manual inspections, clustering coefficients and different visualizations. A detailed
explanation of each step is provided in Section 5.4.

5.1 Data representation

Considering the properties of the dataset described in Section 4, the first step is to select an
appropriate representation of the mobile cell data. We consider two types of representations:
image-based and graph-based representations.

26

Methods Chapter 5

5.1.1 Image-based representation

As the name suggests, the data from each mo-
bile cell, i.e. the KPI measurements from the
respective tiles, is represented as an image.
This representation approach was inspired by
an existing Swisscom tool used to analyze the
performance of mobile cells. The tool gener-
ates interactive footprint maps showing the
KPI measurements of the tiles associated with
the cell of interest, as shown in Figure 5.3. In
these maps, the cell is represented by a black
triangle, and each tile is drawn as a circle. The

throughput dominance of each tile is indicated
by color, as discussed in Section 4.1. Other Figure 5.3: An example of an interactive footprint
metrics and configuration parameters can be map generated by an internal Swisscom tool
viewed by clicking on different elements (e.g.

the site, or tiles) of the maps. Among other tools, radio network engineers use the footprints to
assess the performance of a given mobile cell, identify the root cause of an issue, and propose a
solution.

The image-based representations used in this thesis were constructed in a similar fashion. First,
the site where the cell is located was placed at the center of the image. Then, the image was
rotated so that the beam direction points toward geographical north, for consistency across
mobile cell with different beam directions. Furthermore, the geographical context, i.e., the map,
was removed for simplicity. It is worth noting that the geographical location can influence the
performance of mobile cells, as discussed in (Shibli and Zanouda 2024), but this aspect was not
fully explored in this thesis. Some preliminary experimental setups and ideas for how to use this
information are provided in Appendix A.6. The tiles are shown as circles on the images, with
KPI measurements encoded by color. For example, with throughput dominance, red indicates
poor performance (i.e., the cell is not among the top 5 servers for the tile), while green indicates
good performance. Similar layers are created for SINR and RSRP where red, orange, yellow and
green colors indicate weak, medium, good and excellent performance respectively. Figure 5.4

illustrates an example.

As described in detail later, the image-based representations are used to create embedding vectors,
i.e. latent representations of the mobile cells. In some cases, embeddings were created using a
single KPI layer, such as the throughput dominance. In other cases, all three KPI metrics were
combined by stacking the images into a multi-channel tensor before passing it into a convolutional
neural network.

27

Methods Chapter 5

Throughput SINR RSRP
0.015

0.015 0.015
Site location #® Site location # Site location

0.010 0.010 0.010

0.005

B/

-0.005

0.005 0.005

Y/ N/

-0.005 -0.005

Latitude
Latitude
Latitude

—-0.010 —-0.010 —-0.010

-0.015 -0.015 -0.015
o o o

Longitude Longitude Longitude

Figure 5.4: Example of an image-based representation of a single mobile cell. The cell site is
centered and the image is rotated so the beam direction points north. Tiles are shown as circles,
and KPI values are shown using color. The three images represent different KPIs: throughput
doominance, SINR, and RSRP.

5.1.2 Graph-based representation

As an alternative representation method, the data from each mobile cell can be modeled as an
attributed graph. The motivation behind this approach is twofold. First, there is the question of
efficacy of using color to encode different magnitudes of the KPI measurements. Second, there is
the complexity introduced by having multiple KPI layers (or images) per mobile cell. In contrast,
attributed graphs offer a unified way to represent all KPIs in a single structure.

An attributed graph is designed to capture both the spatial structure of the tiles and their
performance characteristics. The nodes in the graph correspond to individual tiles. Each node is
associated with a feature vector that includes information about the tile’s position relative to the

site, as well as its performance metrics. Specifically, the node features include:

Distance from the site in meters (m).

Relative angle from the site in degrees.

Throughput class: '0’ for bad, '1’ for good performance.

SINR class: ’0’ for weak, '1’ for medium, '2’ for good, '3’ for excellent performance.

RSRP class: ’0’ for weak, ’1’ for medium, 2’ for good, ’3’ for excellent performance.

Edges are created between neighboring tiles that are within a distance of no more than 300 meters
from each other. There are no edge features, as encoding the exact distance between the centers
of the tiles does not add value. An example graph is shown in Figure 5.5, corresponding to the
mobile cell shown in Figures 5.3 and 5.4 to illustrate the connection between the two formats.

28

Methods Chapter 5

Figure 5.5: Example of an graph-based representation of a single mobile cell. Tiles are represented
as nodes, and KPI measurements as node features. Edges are drawn between neighboring tiles.

As will be described later, the graph-based representations are also used to create embedding
vectors. For this reason, standard data preparation techniques such as adding self-loops and
normalizing node features (specifically, using min-max scaling) were applied before passing the
graph data into a graph neural network.

5.2 Embedding techniques

The previous section presented two representation methods for mobile cell data: image-based and
graph-based representations. This section explores strategies for learning embedding vectors from
the aforementioned representations. These latent representations will be used as input to different

clustering algorithms, identifying clusters of cells with similar performance characteristics.

5.2.1 Methods for image-based representations

The methods applied to the image-based representations of the cell data include: pretrained
convolutional neural network and convolutional autoencoder.

Pretrained CNN To obtain embeddings from the mobile cell image-based representations a
pretrained VGG-16 convolutional neural network was used. VGG-16 (Simonyan and Zisserman
2015) is a type of a deep convolutional network with 16 layers. It was pretrained on the ImageNet
dataset (Deng et al. 2009), which contains 1,000 object classes. The last classification layer of the
network was removed, so that it can be used as a feature extractor. The output of the model
was a 2,048-dimensional vector, which was further reduced to a 25-dimensional embedding using
principal component analysis (PCA) (Jolliffe 2005). PCA is a statistical technique used to reduce
the dimensionality of data by transforming it into a new set of uncorrelated variables called

principal components, which retain most of the original variance.

It’s important to note that the pretrained CNN architecture could only process a single KPI

29

Methods Chapter 5

image-representation (i.e. 3 channels). In other words, the embeddings were derived based on the
throughput dominance performance of the mobile cells. Additionally, the data was filtered to
contain only images with at least one red throughput dominance tile, resulting in 2207 images in
total. Since images contain only red or green tiles, green tiles were removed for simplicity. This
directs the model’s focus to the position of red tiles, which is more relevant for detecting spatial
patterns. The entire pipeline is illustrated in Figure 5.6.

Image | C——> | Pretrained Component ——> | Embeddin
o Ve Anglysis °

Figure 5.6: An illustration of the pipeline with a pretrained CNN

Convolutional autoencoder A convolutional autoencoder (CAE) was trained on the dataset of
mobile cell image-based representations. As described in Section 3.2, CAEs fall under unsupervised
learning architectures, in which the model learns to reconstruct the input data using a decoder,
based on a compressed representation produced by the encoder. Both the encoder and decoder
consist of three convolutional layers (the decoder uses transposed convolutions). The compressed
representation is optimized to retain the most important features needed to reconstruct the input
data, and it is used as an embedding to represent the mobile cell. The full pipeline is shown in
Figure 5.7.

The CAE architecture can process both single KPI image-representations (i.e. 3 channels)
and multiple KPI image-representations (i.e. 9 channels composed of the stacked throughput
dominance, SINR and RSRP image layers). Accordingly, two variants of the CAE were trained.
The first variant was trained on throughput dominance images containing at least one red tile,
similar to the pretrained CNN scenario. The second variant was trained on 9-channel images,
i.e., stacked throughput dominance, SINR, and RSRP layers. In both settings, the models were
trained by minimizing the MSE loss between the original and reconstructed images. Training was
performed on a single L40S GPU using the Adam optimizer (Diederik P. Kingma and Ba 2017).
90% percent of the dataset was used for training, and the remaining 10% for validation (testing).

:> :> e :> :> ReCOI:.ISOtSéCted

Figure 5.7: An illustration of the pipeline with a convolutional autoencoder (CAE)

30

Methods Chapter 5

5.2.2 Methods for graph-based representations

The methods applied to the graph-based representations of the cell data include: FEATHER,
graph autoencoder, variational graph autoencoder and the DGLC framework.

FEATHER As described in Section 3.9, FEATHER is a method that uses characteristic
functions to describe the distribution of features in the neighborhood of a node, using random-
walk weights. These node level features are pooled by mean pooling to create graph level
embeddings. FEATHER was considered as an example of a traditional method for learning
embeddings on graphs, similar to the popular graph2vec (Narayanan et al. 2017). Compared to
graph2vec, FEATHER is better suited for attributed graphs, such as those used in this thesis.

The implementation used was the one provided by the KarateClub library!, with default parameters
(i.e., mean pooling), which produced embeddings of length 500. As briefly mentioned earlier,
basic preprocessing was applied before feeding the graphs into FEATHER. This included simple
checks for NaN and Inf values. Additionally, all node features were min-max scaled so that their

values lie between 0 and 1.

Graph autoencoder As described in Section 3.6, graph autoencoders (GAEs) are unsupervised
neural network architectures used to learn node embeddings from graph-structured data. Graph-
level embeddings are constructed by averaging the node-level embeddings, i.e. by mean pooling.

The GAE architecture consists of two main components: an encoder and a decoder. In this
setting, the encoder was composed of two graph convolutional layers (GCNConv), aiming to learn
how to map the nodes into latent representations. The decoder reconstructs the adjacency matrix
of the graph from the embeddings and is implemented as an inner product. The implementation
used was the one provided by PyTorch-Geometricl.

Before training the GAE, self-loops were added to every node in all graphs. Moreover, graphs
without edges were dropped. All node features were min-max scaled to fall between 0 and 1.
Training was done on a single L40S GPU using the Adam optimizer. 90% percent of the dataset
was used for training, and the remaining 10% for validation (testing). The validation set was
used to select the optimal length of the graph-level embeddings.

Variational graph autoencoder The variational graph autoencoder (VGAE) extends the
GAE by introducing a probabilistic framework, based on the VAE architecture, as described in
Section 3.7. As opposed to deterministic node embeddings, the VGAE model learns a distribution
over latent variables for each node. Similarly, graph-level embeddings are obtained by averaging

Thttps: //karateclub.readthedocs.io/
Thttps: //github.com/pyg-team/pytorch _geometric/blob/master /examples/autoencoder.py

31

https://karateclub.readthedocs.io/
https://github.com/pyg-team/pytorch_geometric/blob/master/examples/autoencoder.py

Methods Chapter 5

node-level embeddings, i.e. by mean pooling. The VGAE implementation used was the one
provided by PyTorch-Geometric!™.

In a similar manner as with the GAE, self-loops were added, graphs without edges were excluded
and node features were min-max scaled. Training was done on a single L40S GPU using the
Adam optimizer. 90% percent of the dataset was used for training, and the remaining 10% for
validation (testing). The validation set was used to select the optimal length of the graph-level
embeddings.

DGLC The DGLC framework is an end-to-end framework to learn graph-level embeddings and
perform clustering simultaneously, as outlined in Section 3.7. The implementation was taken
from the original GitHub repository'Y provided by the authors of the paper.

Training was performed on a single L40S GPU using the Adam optimizer. 90% of the dataset
was used for training, and the remaining 10% for validation (testing). It is important to note that
the number of clusters to discover was one of the hyperparameters provided to the model. Other
parameters included the number of layers in the GNN, the dimension of the hidden layer, and
the dimension of the cluster projector (i.e., the embedding size). Variants with different numbers
of clusters were trained, and the validation set was used to determine the optimal values for the
hidden layer and cluster projector dimensions.

5.3 Clustering algorithms

This section describes the clustering algorithms used to cluster the embeddings produced by
the methods described in the previous section for image-based and graph-based representations,
respectively. The clustering algorithms used include: k-means, DBSCAN and Spectral clustering.

k-means As presented in Section 3.10.1, k-means is one of the most popular unsupervised
clustering algorithms, which partitions data into k£ clusters by minimizing within-cluster variance
(i.e., the sum of squared Euclidean distances). An important disadvantage of this algorithm is
that the number of clusters k£ needs to be specified in advance. To mitigate this issue and to guide
the choice of k, both clustering coefficients and the elbow method (Thorndike 1953) are used.

As explained in Section 3.11, the Silhouette, Calinski-Harabasz (CH) and Davies-Bouldin (DB)
scores are suitable for evaluating the clustering performance. By analyzing the trends of these
three scores for different values of k, an appropriate k£ can be chosen. On the other hand, the
elbow method considers the inertia, i.e. the sum of squared distances of samples to their closest
cluster center, and can be used as a heuristic to determine the number of clusters k. The method
consists of plotting the inertia as a function of the number of clusters k, and choosing the value of

Mhttps:/ /github.com /pyg-team /pytorch _geometric/blob/master/examples/autoencoder.py
https://github.com/JinyuCai95/DGLC

32

https://github.com/pyg-team/pytorch_geometric/blob/master/examples/autoencoder.py
https://github.com/JinyuCai95/DGLC

Methods Chapter 5

k where the curve inflects (i.e. the elbow point) as optimal. However, this method is considered
subjective and unreliable (Ketchen and Shook 1996; Schubert 2023), especially in settings where
a clear elbow point can not be identified.

DBSCAN Section 3.10.2 provides a detailed description of DBSCAN, one of the most well-
known and widely-used clustering algorithms. Unlike k-means, DBSCAN is a density-based
algorithm that groups together points in close proximity (i.e., in high-density regions), while
marking as outliers points found alone or with few neighbors (i.e., in low-density regions).
Additionally, DBSCAN does not require the number of clusters k to be specified a priori, which
can be seen as an advantage. However, there are two other important parameters that influence
the clusters discovered by the algorithm: ¢ and min_samples. The ¢ parameter refers to the
maximum distance between two points for one to be considered a neighbor of the other, while
min_samples refers to the minimum number of points in a neighborhood of a point required to
form a cluster (i.e., the minimum number of points required to form a dense region).

Typically, the min_samples parameter is set to be at least D + 1, where D represents the
dimensionality of the data points in the dataset. (Ester et al. 1996) propose to select min_samples
as 4 for 2-dimensional datasets, while (Sander et al. 1998) suggest a generalization of 2 - D for D
dimensions. However, (Schubert et al. 2017) state that for larger, higher-dimensional datasets or

datasets with many duplicates and noise, increasing min_samples can improve performance.

The value of € parameter is often more challenging to choose. If ¢ is chosen to be too small, a
large portion of the dataset will not be clustered (i.e., it will be assigned as outliers). On the
other hand, if € is set too large, the clusters will merge, resulting in majority of the data points
belonging to the same cluster. (Ester et al. 1996) propose a heuristic for choosing e: the k-dist
graph. First, the distances to the k-nearest neighbor of each point in the dataset are computed,
where k is set to min_samples — 1 as per (Sander et al. 1998). Next, the distances are ordered in
descending order and shown on a graph. The distance where the graph inflects (i.e., the elbow,

knee or walley point) is considered a good choice for e.

It is important to note that, due to the nature and size of the dataset at hand, we also experimented
with values of € and min_samples beyond the outlined recommendations.

Spectral clustering Spectral clustering requires specifying the number of clusters k in advance,
which poses a challenge as in many other clustering approaches. Similarly as in k-means, clustering
coefficients can help. However, there exists a specific heuristic to Spectral clustering, which is the
etgengap heuristic. Let A\ < Ao < --- < A\, be the eigenvalues of the Laplacian matrix L. The
goal is to choose k such that A1, Aa,... Ax are very small, but Agq; is relatively large, as described
in (Luxburg 2007).

It should be noted that the algorithm was used with a fully connected similarity graph constructed
using a Gaussian, (i.e. radial basis function) kernel as described in Section 3.10.3.

33

Methods Chapter 5

5.4 Evaluation

The main challenge in this thesis is evaluation. The goal is to identify clusters of mobile cells based
on their performance characteristics. Specifically, cells that share common spatial performance
patterns should be grouped together. However, the dataset does not contain ground truth labels
linking mobile cell data to specific spatial patterns or radio network issues. This makes evaluation
particularly difficult, as no standard metric (e.g., accuracy, or F1 score) can be applied to measure
the results obtained by the methods described earlier. Moreover, defining a domain-specific
quantitative metric in an unsupervised setting is challenging. Measuring an absolute distance
or similarity between data from two mobile cells is not straightforward, since similarity can be
based on different factors. One possibility could be to use a pretrained foundation model trained
on large amounts of mobile cell performance data, both of which are not available.

Therefore, a two-step qualitative evaluation procedure is proposed. First, an evaluation pipeline
consisting of various visualizations and clustering coefficients was applied. Secondly, examples
from the clusters were sent to network engineers at Swisscom for interpretation. The evaluation
relied primarily on the first step, as the second step was slow and time-consuming. Expert input
was used mainly to validate claims and observations from the initial analysis.

The evaluation pipeline includes manual inspection, clustering coefficients, as well as projections
of the clusters in a two-dimensional space with PCA, t-SNE and UMAP, radial sector maps and
custom cluster statistics. Each of the components is described in detail below.

Manual inspection The first step of the evaluation pipeline involves visualizing a sample of
cells from each cluster.

Clustering coefficients The Silhouette, Calinski-Harabasz, and Davies-Bouldin scores are

used to evaluate clustering performance.

PCA, t-SNE and UMAP visualizations PCA (Jolliffe 2005) is a linear dimensionality
reduction technique effective for discovering global patterns, while t-SNE (Maaten and G. Hinton
2008) and UMAP (Mclnnes, Healy, and Melville 2020) are nonlinear techniques that preserve both
global and local structures (e.g., clusters, patterns, and other relationships between nearby points).
Visualizations based on these three methods are used to analyze the shape of the clusters in the
projected two-dimensional space. Data points are colored according to their cluster membership.
The plots can be also used to compare the results of different clustering approaches.

Adjusted Rand Index (ARI) and Adjusted Mutual Information (AMI) scores The ARI
and AMI scores, as described in Sections 3.11.4 and 3.11.5 respectively, are used to compare the
results obtained by different clustering approaches (k-means, DBSCAN and Spectral clustering).

34

Methods Chapter 5

1.0 1.0

Tile Probability per Sector Bad THR Probability per Sector
345" 0 - 15° 345“ 0 - 15°

0.8

0.6

0.4

0.2

0.0 0.0

1.0 1.0
Bad SINR Probability per Sector Bad RSRP Probability per Sector

(SINR < 0 dB) (RSRP < -107 dBm)
e O s s O 150

0.8

0.6

0.4

0.0 0.0

Figure 5.8: Example of a radial sector map

They are convenient because they can quantify the agreement between two independent label
assignments on the same dataset in the absence of ground truth labels.

Radial sector maps Radial sector maps are polar heatmaps used to characterize mobile cells
found in each cluster. The area shown on the maps is divided in sectors, defined by angle and
distance from the cell site. The first map shows the probability that a cell has a tile in each
sector. The remaining three maps display the probabilities of cells having bad tiles based on
different performance metrics: throughput dominance, SINR and RSRP. An example is shown in
Figure 5.8.

Custom metrics The last step of the evaluation pipeline consists of visualizing custom metrics:
average SINR, RSRP, cell range, and fraction of red tiles.

35

Results

This section presents the results obtained from the methods described in Section 5. As previously
discussed, due to the absence of ground truth labels, an evaluation pipeline based on multiple
visualizations and scores was proposed to assess and compare the performance of different
approaches.

Specifically, the results are given for the two different types of data representations, i.e., image-
based and graph-based representations, along with the respective methods applied to each. First,
the choice of parameters for the three clustering algorithms used (k-means, DBSCAN, and Spectral
clustering) is briefly explained. Then, visualization methods using PCA, t-SNE, and UMAP
are applied to display the clusters obtained by each clustering algorithm in the projected 2D
space. The Adjusted Rand Index (ARI) and Adjusted Mutual Information (AMI) compare the
results across the algorithms for each representation method. Furthermore, the discovered spatial
patterns are presented using radial sector maps. Finally, where applicable, expert feedback is
provided by radio network engineers at Swisscom, validating some of the results and linking them
to potential issues.

Table 6.1 summarizes the parameters used for each clustering algorithm by method, i.e., & for
k-means and Spectral clustering, and € and min_samples for DBSCAN. The detailed process
for selecting these parameters is explained in Section 5.3, and an example of the workflow is
detailed in Section 6.1.1 for the embeddings obtained from the pretrained CNN. For each of the
subsequent methods, the parameters, together with the resulting relevant information such as the

Table 6.1: Clustering parameters by embedding-learning method

Method k-means DBSCAN Spectral clustering
Pretrained CNN k=3 € = 0.5, min_samples = 10 k=30
Single-layer CAE k=30 € =17, min_samples = 10 k=30
Multi-layer CAE k=30 NA k=30
FEATHER k=15 € = 0.2, min_samples = 20 k=30
VGAE k=6 € = 0.45, min_samples = 20 k=6

DGLC k =10, 20, 30 NA k =10, 20, 30

36

Results Chapter 6

Silhouette Score Calinski-Harabasz Score Davies-Bouldin Score
0.501 2000 4 1.44
1800 A 1.3
0.45 1600 A 1.24
1400 A 114
0.40 1
1200 A 1.04
0.351 1000 A 0ol
800 081
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Number of clusters (k) Number of clusters (k) Number of clusters (k)

Figure 6.1: Silhouette, Calinski-Harabasz and Davies-Bouldin scores for different values of &k of
the k-means algorithm (Pretrained CNN)

number of clusters, number of outliers, and clustering coefficients (Silhouette, Calinski-Harabasz,
and Davies-Bouldin scores), are briefly reported. Although heuristics such as the elbow method
(k-means), k-dist graph (DBSCAN), and eigengap heuristic (Spectral clustering) exist for selecting
optimal parameters, they serve merely as guidelines and can be subjective or unreliable (Ketchen
and Shook 1996; Schubert 2023). That is, sometimes the choice of the parameters is dataset
dependent and may rely on expert opinion or manual parameter search.

6.1 Image-based representations

The results from the methods applied to the image-based representation of the mobile cell data
are presented below, starting with the pretrained CNN, followed by the convolutional autoencoder
architecture for single-layer and multi-layer KPI. For the pretrained CNN, the process of selecting
the optimal parameters for the clustering algorithms is described in detail. For the convolutional
autoencoder, the descriptions are more concise.

6.1.1 Pretrained CNN

As described in Section 5, k-means, DBSCAN, and Spectral clustering were applied to the
embeddings obtained from the pretrained CNN combined with PCA.

k-means Figure 6.1 shows the Silhouette, Calinski-Harabasz (CH) and Davies-Bouldin (DB)
scores for different values of k of the k-means algorithm. As described in Section 3.11, higher
values of the Silhouette and CH scores and lower values of the DB score indicate better clustering
performance. From the plots, we observe that as k increases, the Silhouette and CH scores
decrease, while the DB score increases, which suggests that smaller k produce better clusters. The
highest Silhouette and CH scores, and the lowest DB score is attained for £ = 3. Furthermore,
the left panel Figure 6.2 shows the elbow method. While a clear inflection point cannot be seen,
the rate of decrease of the inertia (Section 5.3) slows down between k& = 3 and k& = 8. Based on

37

Results Chapter 6

1e6 Elbow method k-dist Graph
140
2.0
120
=2
Z 1001
o 1.5 =]
E X 801
£
o 2
1.0 g 601
: c
S a0
o
0.51 o 20
5 10 15 20 25 30 o1 ; i i ;
Number of clusters (k) 0 500 1000 1500 2000

Nata naints

Figure 6.2: Elbow method for k-means (left) and k-dist graph for DBSCAN (right) (Pretrained
CNN)

the described observations, the number of clusters was set to 3. When k = 3, the Silhouette, CH
and DB are 0.52, 2121.65 and 0.78, respectively. resulting. Refer to Section 3.11 for more details
on these scores.

DBSCAN Figure 6.2 (right) shows the k-dist graph for selecting an optimal value of € for
DBSCAN for different values of k£ (min_samples - 1). As described in Section 5.3, min_samples
should be set to at least D 4+ 1 or 2 - D, where D is the dimensionality of the embeddings. In
this setting, D = 25, so min_samples should be at least 26. The plot does not reveal a clear
inflection point for any of the curves. An interesting observation is the steep, stair-like drop that
occurs around € = 3 in all curves. Additionally, the relatively large distances to the k-th nearest
neighbor, as shown on the y-axis, suggest that the space is sparse.

Figure 6.3 explores values of € around 3 by showing the number of clusters and the fraction of
outliers. Intuitively, € should not be chosen too large as it will cause different clusters to merge
together. Based on these observations, € can be set to 2.8 and min_samples to 26, resulting in
8 clusters and 71% of the data labeled as outliers. However, it is important to keep in mind
that the heuristics are just guidelines. They can provide some intuition on how to choose the
parameters for € and min_samples, but their recommendations should not be taken as definitive.
Observing the visualizations produced by PCA, t-SNE and UMAP and the radial sector maps,
setting min_samples to smaller values than recommended can sometimes help identify clusters
with fewer points. Since the dataset is relatively small and we are looking for distinct patterns
or anomalies, detecting groups of outliers can be more valuable. Hence, manually tuning the
parameters can be a reasonable approach. After some experimentation, min_samples was set to
10, while € was set to 0.5 for DBSCAN, resulting in 18 clusters and 66.92 % of outliers.

Spectral clustering The same reasoning applies to Spectral clustering. The Silhouette and
DB scores shown in Figure 6.4 suggest that larger values of k produce better clustering results.

38

Results Chapter 6

Fraction of Outliers
0.73 0.73 0.73 0.73 0.73/0.73 0.73 0.73 0.71 0.71 0.71 0.71 0.69 0.69 0.69 0.
0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.71 0.71 0.71 0.71 0.69 0.69 0.69 0. 61 -0.78

Number of Clusters

0.73/0.73 0.730.73 0.73/0.73 0.730.73 0.71 0.71 0.71 0.71 0.69 0.69 0.69 0.

0.74 0.73 0.73/0.73 0.73/0.73 0.73 0.73 0.71 0.71 0.71 0.71 0.69 0.69 0.69 0.68 0 6 0.6 076

0.74 0.74 0.72 0.72/0.71 0.69
10,74 0.74 0.72 0.72/0.71 0.69 0.69 0.6

ples

45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26
ples
45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26

min_sam
min_sam

-0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.7 0.7 0.77 0.77 0.7
-0.77 0.77 0.7 0.77 0.77 0.77 0.77 0.7 0.7 0.77 0.77 0.7
-0.77 0.77 0.7 0.77 0.77 0.77 0.77 0.7 0.7 0.77 0.77 0.7

-0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.77 0.77 0.77 LN ZIRENR ZIR PARA NI 0.62

2.‘0 2‘1 2.‘2 213 2.‘4 215 Z.‘S 217 Z‘B 2.‘9 3‘.0 3.‘1 3.2 3.3 3.4 35 3.6 3.7 3.8 39 4.0
Epsilon Epsilon

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

Figure 6.3: Number of clusters and fraction of outliers as functions of ¢ and min_samples
(Pretrained CNN)

Silhouette Score Calinski-Harabasz Score Davies-Bouldin Score
500
0.3
2.2
0.2 400 204
0.1
300 A 1.84
0.0
1.64
0.1 200 A
1.44
—0-27 100+ 124
_0.34
0 1.04
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Number of clusters (k) Number of clusters (k) Number of clusters (k)

Figure 6.4: Silhouette, Calinski-Harabasz and Davies-Bouldin scores for different values of &k of
the Spectral clustering algorithm (Pretrained CNN)

Additionally, the eigengap heuristic shown in Figure 6.5 identifies an absurd value of k = 641
clusters for a dataset of 2207 points. Applying the same reasoning as DBSCAN, the number of
clusters k£ was set to 30.

PCA, t-SNE and UMAP visualizations Figure 6.6 shows PCA, t-SNE and UMAP projec-
tions of the clusters produced by k-means, DBSCAN and Spectral clustering. Black data points
in the DBSCAN-related plots represent outliers. DBSCAN and Spectral clustering identify many
small, well-separated groups, while k-means produces larger clusters. Furthermore, t-SNE and
UMAP reveal clearer separation between clusters than PCA.

AMI and ARI scores Tables 6.2 and 6.3 give the ARI and AMI scores between the clustering
assignments given by k-means, DBSCAN and Spectral clustering. Both metrics show low similarity
between k-means and the other methods, and moderate similarity between DBSCAN and Spectral
clustering.

39

Results Chapter 6

Spectrum of the Laplacian matrix

2.001 --- Eigengap - k = 641

=
N}
G

Eigenvalue
o o =
o 3 o
S & 38

0 500 1000 1500 2000
Eigenvalue Index

Figure 6.5: Eigengap heuristic for Spectral clustering (Pretrained CNN)

Table 6.2: Adjusted Rand Index (ARI) between Table 6.3: Adjusted Mutual Information (AMI)

clustering methods (Pretrained CNN) between clustering methods (Pretrained CNN)
k-means DBSCAN Spectral k-means DBSCAN Spectral
k-means 1.00 0.09 0.15 k-means 1.00 0.30 0.40
DBSCAN 0.09 1.00 0.19 DBSCAN 0.30 1.00 0.57
Spectral 0.15 0.19 1.00 Spectral 0.40 0.57 1.00

Observations Figures 6.7, 6.8, and 6.9 show some of the spatial patterns using the radial sector
maps described in Section 5.4. For readability, only a few maps are shown. All radial sector maps
are shown in Appendix A.1.

Figure 6.7 shows the maps for all three clusters discovered by k-means. No clear spatial pattern
emerged, the clusters appear mixed and the probabilities per sector remain low. One can
hypothesize that since k is small, k-means likely merges distinct patterns together.

Figure 6.8 shows a few of the patterns found by the DBSCAN algorithm. The clusters correspond
to different directions and distances of the red tiles relative to the cell site. Figures 6.10, 6.11,
and 6.12 show a few examples of mobile cells from Clusters 9, 14 and 17. While DBSCAN
produces clusters where elements share problematic (red) tiles at the same physical location, it
can also generate multiple clusters with similar radial sector maps. Sometimes the radial sector
maps show low probabilities across all regions, suggesting that several different patterns are
grouped into the same cluster. In most clusters, the mobile cells contain only one or a few red
tiles. Mobile cells with more red tiles and less defined structures were considered outliers.

Figure 6.9 shows a few clusters identified by Spectral clustering. This algorithm does not account
for outliers and finds patterns similar to those detected by DBSCAN. Specifically, these patterns
include different directions and distances of the red tiles relative to the cell site. Sometimes, it
detects very fine-grained differences; for example, Clusters 12 and 13 in Figure 6.9 both consist of

40

Results Chapter 6

PCA (k-means) t-SNE (k-means) UMAP (k-means)
40
20
20
10 .
¥ .
0 S
o
0 Lot
-
-20 *.f“. i .
-10 ° N
-40 ’ .
-20
60 .
-100 -10 0 10 20 30
PCA (DBSCAN) t-SNE (DBSCAN) UMAP (DBSCAN)
40 . ot)
20
20 * \
10
N .
° 5
.
-20 . .
-10 ° :
—40 ‘ .
-20
—-60 .
-100 -80 -60 —40 =20 0 20 40 —40 =30 =20 -10 0 10 20 30 40 -10 0 10 20 30
t-SNE (Spectral clustering) UMAP (Spectral clustering)
40 . ®
60
& 20
20 -
N
40 .
- .® - 10 .
0 ¢ N ') \‘
- Ao
-20 ', o . \’_t.
b ¢
-40 j .
. -20 e —20
5 -
60 .
—-40
-100 -80 -60 -40 =20 0 20 40 -40 =30 =20 -10 0 10 20 30 40 -10 0 10 20 30

Figure 6.6: Clustering results on pretrained CNN embeddings visualized with PCA (left), t-SNE
(center), and UMAP (right), using k-means (top row), DBSCAN (middle row), and Spectral
clustering (bottom row).

41

Results Chapter 6

Cluster 1: 1391 cells Cluster 2: 420 cells Cluster 3: 396 cells
1.0 1.0 1.0
Bad THR Probability per Sector Bad THR Probability per Sector Bad THR Probability per Sector
[o o

345° 15° 345°

15° 3a5°

15°

0.0 0.0 0.0

Figure 6.7: Spatial performance patterns discovered using k-means, shown as radial sector maps
of bad throughput probability per sector (Pretrained CNN)

Cluster 9: 16 cells Cluster 14: 11 cells Cluster 17: 14 cells
1.0 1.0 1.0
Bad THR Probability per Sector Bad THR Probability per Sector Bad THR Probability per Sector
0° 0° 0°

345° 15° 345° 15° 3457 150

Figure 6.8: Spatial performance patterns discovered using DBSCAN, shown as radial sector maps
of bad throughput probability per sector (Pretrained CNN)

Cluster 12: 15 cells Cluster 13: 26 cells Cluster 22: 42 cells
1.0 1.0 1.0
Bad THR Probability per Sector Bad THR Probability per Sector Bad THR Probability per Sector
0° 0 0°

345° _15° 345° 15° 345° 15°

Figure 6.9: Spatial performance patterns discovered using Spectral clustering, shown as radial
sector maps of bad throughput probability per sector (Pretrained CNN)

42

Results Chapter 6

4
&
332
H

Figure 6.10: Example mobile cells from Cluster 9 discovered by DBSCAN (Pretrained CNN)

St

‘:.::'is:s
Y
v,

Figure 6.11: Example mobile cells from Cluster 14 discovered by DBSCAN (Pretrained CNN)

cells with red tiles at the front of the beam on the right side. However, for Cluster 12 the azimuth
ranges between 15° and 30°, while for Cluster 13 it ranges between 60° and 75°. Additionally,
compared to DBSCAN, Spectral clustering detects directional patterns where the red tiles are
further away from the site, such as Cluster 22 shown in Figure 6.9 (as well as clusters 23 and 26
shown in the Appendix A.1).

Interpretations Radio network engineers inspected some of the clusters discovered by DBSCAN
and Spectral clustering. The distance and direction of red tiles becomes interesting when they are
located outside the coverage area of the cell (given by its range, beam direction and sector angle),
as is the case with Cluster 14 discovered by DBSCAN (Figure 6.11). This may indicate the
presence of an object (e.g., a building) reflecting the signal in an unintended direction, but more
importantly, it can suggest issues with one of the neighboring cells. Specifically, upon examining
examples from Cluster 14, engineers identified problems with the tilt and power configurations of

4
.(.:'.
4]
W

Figure 6.12: Example mobile cells from Cluster 17 discovered by DBSCAN (Pretrained CNN)

43

Results Chapter 6

neighboring cells. These misconfigurations caused the neighboring cells to fail to properly serve
the area represented by the red tiles, which was instead being served by the cell of interest.

6.1.2 Convolutional Autoencoder

As described in Section 5.2.1, two variants of the CAE architecture were trained. The first variant
(Single-layer KPI) is trained on throughput dominance images, while the second (Multi-layer KPI)
is trained 9-channel images, i.e., stacked throughput dominance, SINR, and RSRP layers. Using
the validation set, the hidden layer size (i.e., embedding size) was set to 64 for both the first and
the second variant. Further details on hyperparameter tuning are provided in Appendix A.2.1.

Single-layer KPI CAE

The parameters for each clustering algorithm were selected following the procedure described in
Sections 5.3 and 6.1.1. For k-means, the number of clusters was set to 30, resulting in Silhouette,
DB, and CH scores of 0.09, 54.1, and 1.79, respectively. Unlike in Section 6.1.1, the Silhouette,
CH, and DB indices did not agree on the optimal value of k. Specifically, the Silhouette score
increased with larger k, while the CH and DB scores decreased. Similarly, the elbow method
did not reveal a clear inflection point. For DBSCAN, ¢ and min_samples were set to 17 and 10,
respectively, resulting in 9 clusters and 88.45% outliers. Tuning these parameters was challenging.
According to the heuristics, if min_samples was set to at least D + 1 (i.e., 65 in this case), for ¢
smaller than 39 the algorithm produced zero clusters. Increasing ¢ resulted in one to two clusters,
which was undesirable. Therefore, the parameters were manually tuned, as described earlier, by
examining visualizations from PCA, t-SNE, and UMAP alongside the patterns revealed by the
radial sector maps. For Spectral clustering, the eigengap heuristic suggested choosing k£ as 2030,
which is an absurdly large value. However, as previously discussed, it was set to 30, yielding
Silhouette, CH, and DB scores of —0.05, 35.55, and 2.07, respectively.

PCA, t-SNE and UMAP visualizations Figure 6.13 shows PCA, t-SNE and UMAP
visualizations of the cluster assignments given by the 3 algorithms. Data points colored black in
the DBSCAN-related plots represent outliers.

AMI and ARI scores Tables 6.4 and 6.5 give the ARI and AMI scores between the clustering
assignments given by k-means, DBSCAN and Spectral clustering, respectively.

Observations Figures 6.14, 6.15, and 6.16 show some of the discovered spatial patterns using
the radial sector maps described in Section 5.4. For readability, only a few maps are shown per
clustering algorithm.

44

Results

Chapter 6

PCA (k-means)

t-SNE (k-means)

UMAP (k-means)

100

-100

-150

-200

-200 -100 0

PCA (DBSCAN)

150

100 40

20

-100

-150

-200

-200 -100 0 100

150

PCA (Spectral clustering)
40

100

20

-100

-150

-200

-200 -100 0 100 -40 -20

Figure 6.13: Clustering results on Single-layer KPI CAE embeddings visualized with PCA (left),
t-SNE (center), and UMAP (right), using k-means (top row), DBSCAN (middle row), and

Spectral clustering (bottom row).

Table 6.4: Adjusted Rand Index (ARI) between
clustering methods (Single-layer KPI CAE)

k-means DBSCAN Spectral
k-means 1.00 0.00 0.36
DBSCAN 0.00 1.00 0.02
Spectral 0.36 0.02 1.00

Table 6.5: Adjusted Mutual Information (AMI)
between clustering methods (Single-layer KPI
CAE)

k-means DBSCAN Spectral
k-means 1.00 0.13 0.57
DBSCAN 0.13 1.00 0.21
Spectral 0.57 0.21 1.00

45

Results Chapter 6

Cluster 4: 24 cells Cluster 8: 47 cells Cluster 13: 16 cells
1.0 1.0 1.0
Bad THR Probability per Sector Bad THR Probability per Sector Bad THR Probability per Sector
[o o

345° 15° 345°

15° 3a5°

15°

0.0 0.0 0.0

Figure 6.14: Spatial performance patterns discovered using k-means, shown as radial sector maps
of bad throughput probability per sector (Single-layer KPI CAE)

Cluster 5: 7 cells Cluster 8: 16 cells Cluster 9: 14 cells
1.0 1.0 1.0
Bad THR Probability per Sector Bad THR Probability per Sector Bad THR Probability per Sector
0° 0° 0°

345° 15° 345° 15° 3457 150

Figure 6.15: Spatial performance patterns discovered using DBSCAN, shown as radial sector
maps of bad throughput probability per sector (Single-layer KPI CAE)

Cluster 1: 26 cells Cluster 3: 99 cells Cluster 12: 15 cells
1.0 1.0 1.0
Bad THR Probability per Sector Bad THR Probability per Sector Bad THR Probability per Sector
0° 0 0°

345° _15° 345° 15° 345° 15°

Figure 6.16: Spatial performance patterns discovered using Spectral clustering, shown as radial
sector maps of bad throughput probability per sector (Single-layer KPI CAE)

46

Results Chapter 6

W". W

o
(1

Figure 6.17: Example mobile cells from Cluster 4 discovered by k-means (Single-layer KPI CAE)

o, .
o.‘.'.:-:..'.-' .!: K .

. . oo

2000 .::5';‘ stee o0 ocese
- 5o Secese oosee

E = & =

Figure 6.18: Example mobile cells from Cluster 8 discovered by k-means (Single-layer KPI CAE)

Figure 6.14 shows a few interesting performance patterns discovered by k-means (i.e., Clusters 4,
8 and 24). Similarly as before (i.e., Section 6.1.1), the majority of patterns correspond to different
angular directions and distances of red tiles respective to the cell site. However, the mobile cells
in Cluster 4 are characterized by a lot of red tiles positioned in all directions around the site,
as shown in the selected examples in Figure 6.17. Similarly, the mobile cells in Cluster 8 are
characterized by one or few red tiles located in front of the beam of the antenna at distances
between 1000 and 1500 meters, as shown in Figure 6.18. Finally, Cluster 13 corresponds to a
pattern characterized by a high concentration of red tiles in front of the antenna beam, particularly
at azimuth angles between 300 and 315 degrees (Figure 6.19).

Figures 6.15 and 6.16 show some of the patterns discovered by DBSCAN and Spectral clustering.
Similarly as before, both algorithms identify patterns corresponding to different directions and
distances of red tiles relative to the mobile cell site. DBSCAN produces only 9 clusters and a high
percentage of outliers, failing to capture the full diversity of possible patterns. Spectral clustering,
on the other hand, produces results that are similar to those of k-means. All three algorithms
still produce mixed clusters, i.e., clusters with seemingly no pattern, as well as duplicate clusters,
i.e., clusters with similar patterns.

Multi-layer KPI CAE

The Multi-layer KPI CAE is the first approach that considers all three layers of KPIs, i.e.,
throughput dominance, SINR and RSRP. In other words, this model was trained on images
consisting of 9 channels, i.e., 3 channels per KPI metric.

47

Results Chapter 6

{%\\\ . .
; W 2 *sii?

i

Figure 6.19: Example mobile cells from Cluster 13 discovered by k-means (Single-layer KPI CAE)

As before, the first step of the analysis was to set the optimal parameters for each clustering
algorithm. For k-means, the Silhouette and CH scores decreased as k increased, which suggests that
lower values of k produce better clusters. However, the DB score also decreased for larger values of
k indicating that higher values of k produce better clusters, which was contradictory. Furthermore,
the elbow method showed no clear inflection point. Regarding DBSCAN; if min_samples was set
to at least D 4 1, the algorithm discovered zero to one clusters for different values of €. Relaxing
min_samples and experimenting with € in some cases produced three to six clusters; however,
this was accompanied by an astonishing number of outliers (above 95%). Similarly, the eigengap
heuristic for Spectral clustering suggested an absurd number of 9956 clusters for a dataset of
10443 points.

Observations Unfortunately, the visualizations with PCA, t-SNE, and UMAP did not show
clear cluster separations either. Figure 6.20 shows the projections of the data embeddings given
by each of these methods. Similarly, the radial sector maps did not reveal specific patterns for
the performance metrics, unlike in Sections 6.1.1 and 6.1.2. Consequently, only k-means and
Spectral clustering were considered, as even manual tuning failed to produce meaningful results
with DBSCAN due to the high number of outliers. In both approaches, k was set to 30. The only
aspect the resulting clusters appeared to reflect was the shape and size of the area covered by the
cell, indicating its range. This was validated by the first of the four radial sector maps described
in Section 5.4, as well as by manual inspection of the cells assigned to each cluster. Examples are
shown in Figure 6.20. The ARI and AMI scores between the cluster assignments produced by

k-means and Spectral clustering were 0.2 and 0.47, respectively.

Interpretations According to the radio network engineers, the shape and size of the area
covered by a mobile cell is not particularly useful on its own. It could become relevant when
combined with information about the cell’s location. For example, a large coverage area might be
acceptable if the cell is located outside of an urban area. However, the same pattern inside a city
could indicate a problem.

48

Results Chapter 6

PCA

100

-150 -100 -50 0 50 -80 -60 —40 -20 0 20 40 60 80 0 2 4 6 8

Figure 6.20: Multi-layer KPT CAE embeddings visualized with PCA (left), t-SNE (center), and
UMAP (right)

6.2 Graph-based representations

The results from the methods applied to the graph-based representation of the mobile cell data
are presented below, starting with FEATHER, followed by the graph autoencoder, variational
graph autoencoder, and the DGLC framework. As with the image-based representations, k-means,
DBSCAN, and Spectral clustering were applied to the graph-level embeddings produced by each
of these approaches to generate clusters.

6.2.1 FEATHER

Similarly as Section 6.1.2, the heuristics for determining the optimal parameters of k-means,
DBSCAN and Spectral clustering were not particularly useful. Furthermore, the radial sector
maps showed no patterns to guide parameter selection, making the process even more challenging.
Fortunately, the t-SNE visualization showed isolated blobs of data points, so the objective during
parameter selection was to separate them as good as possible and analyze what they correspond
to. Figure 6.22 shows PCA, t-SNE, and UMAP visualizations of the cluster assignments produced
by the three algorithms.

k-means The Silhouette score decreased and the DB score increased with larger values of k,
indicating that lower values produce better clusters. However, the CH score increased with k,
suggesting the opposite. The elbow method showed no clear inflection point. Based on manual
parameter tuning, aiming for a compromise between the clustering coefficients and taking into
account the visualizations from PCA, t-SNE, and UMAP, k was set to 15. The resulting Silhouette,
CH, and DB scores were 0.41, 18335.45, and 0.76, respectively.

DBSCAN Following the heuristics, setting min_samples to at least D + 1 or 2D resulted in
0 to 2 clusters for different values of e, which was undesirable. Therefore, € and min_samples

49

Results

Chapter 6

Cluster 2: 1111 cells

Tile Probability per Sector
3457 0 _15°

Results

Cluster 7: 297 cells

Tile Probability per Sector
345" 0 _ 15°

0.8

0.0

0.0

Results

Cluster 4: 102 cells
1.0

Tile Probability per Sector
o

3a5° 15°

0.8

0.6

0.4

0.2

0.0

%’

A%

Figure 6.21: Spatial performance patterns discovered using k-means, shown as radial sector maps
of tile probability per sector (Multi-layer KPI CAE) in the top row. The bottom row shows
example mobile cells from each cluster, using the image corresponding to throughput dominance.

50

Results Chapter 6

PCA (k-means) t-SNE (k-means) UMAP (k-means)
, — . . ' N
. 3 z a 20 : » .
2 N 9 X2 .
: . 23,9
.
15
1
10
o
5
-1
0
-
-2 -5 .
. .
_3 -10
-100
=15
-6 —4 -2] 2 -100 =75 -50 -25 0 25 50 75 -20 -15 -10 -5 [5 10 15 20
PCA (DBSCAN) UMAP (DBSCAN)
R T 25 .
3 75
20 L] L]
2 50 4
15
25
1
10
0
0 5 .
=25
1 0 .
_s0 .
-2 - L]
=75
-10
_3 .
-100
-15
-6 -4 -2 0 2 -100 =75 =50 =25 o 25 50 75 =20 =15 -10 -5 0 5 10 15 20
PCA (Spectral clustering) t-SNE (Spectral clustering) UMAP (Spectral clustering)
25
3 75
20 -
~
50 .
2 15 . N
., R .
X 25 10 N
0 ¥ N ~ ?
0 Pa— 5 :
-25 rei . ﬁ' .
0 <3 4
-1 G .
-50 . * 5‘ S
s . B
-2
=75
-10
-3
-100
-15
-6 -4 -2 0 2 -100 =75 =50 =25 o 25 50 75 =20 =15 -10 -5 0 5 10 15 20

Figure 6.22: Clustering results on FEATHER embeddings visualized with PCA (left), t-SNE
(center), and UMAP (right), using k-means (top row), DBSCAN (middle row), and Spectral
clustering (bottom row).

o1

Results Chapter 6

were determined by examining the number of clusters produced and the fraction of outliers for
each combination. Finally, based on manual tuning and observing the cluster assignments via
the visualizations with PCA, t-SNE, and UMAP, € was set to 0.2 and min_samples to 20. This
resulted in 29 clusters and 19.32% outliers.

Spectral clustering The eigengap heuristic suggested setting k to 7, resulting in Silhouette, CH
and DB scores of -0.35, 672.79 and 1.14 respectively. However, observing the cluster assignments
via the visualizations with PCA, t-SNE and UMAP, k was set to 30, improving each of the
Silhouette, CH and DB scores to 0.22, 3161.38, and 0.82, respectively.

Observations The clusters discovered by each of the algorithms mainly correspond to the size
of the area covered by the cell, similarly as in Section 6.1.2, i.e., the number of tiles or nodes
in the graphs. It is clear that the clusters do not reflect performance patterns, as was the case
before in Sections 6.1.1 and 6.1.2 with varying locations of red throughput dominance, SINR, or
RSRP tiles. Beyond grouping the graphs by the number of nodes, some clusters correspond to
isomorphic graphs (i.e., graphs with the same structure). Figure 6.23 shows examples of clusters
linked to specific graph structures discovered by DBSCAN.

6.2.2 (Variational) Graph Autoencoder

As described in Section 5.2.2, the embedding size was set to 64 for the GAE and 16 for the
VGAE, using the validation set. Further details on hyperparameter tuning are provided in
Appendices A.3.1 and A.4.1. As neither method produced interpretable results, only the results
from the VGAE are described below (the outcome was similar for the GAE). Following the
procedure in Sections 6 and 6.1.1, the first step was to select the clustering parameters. Figure 6.24
shows PCA, t-SNE, and UMAP visualizations of the resulting cluster assignments, while Tables 6.6
and 6.7 report the corresponding ARI and AMI scores.

k-means For k = 6, the Silhouette and CH scores attained their maximum, while the DB score
reached its second lowest value. As the elbow method likewise displayed a subtle inflection point
in the same range, k was set to 6. The resulting Silhouette, CH and DB scores were 0.22, 1486.69
and 1.51, respectively.

DBSCAN The number of clusters and the fraction of outliers for different combinations of ¢
and min_samples showed that for € values larger than 1, all points were assigned to a single cluster
(i.e., one cluster and 0% outliers), even when min_samples was as low as 3. For min_samples
equal to D 4+ 1 (17 in this setting), the k-dist graph didn’t show a clear inflection point, however
the rate of decrease significantly dropped between 0.7 and 1 for . Nevertheless, the corresponding
range of ¢ and min_samples resulted in 1 cluster and 0 to 4% of outliers which was undesirable.

52

Results Chapter 6

R
&
E)

«
A
“

1 *®

AL

5

Figure 6.23: Examples of clusters corresponding to isomorphic graph structures discovered by
DBSCAN (FEATHER). Each row corresponds to a different cluster and shows the graph structure
along with a few examples.

93

Results Chapter 6

PCA (k-means) t-SNE (k-means) UMAP (k-means)

-1.0 -05 0.0 0.5 1.0 15 2.0 -75 -50 -25 0 25 50 75 100 -2 0 2 4 6 8 10

PCA (DBSCAN)

75

50

25

-25

PCA (Spectral clustering)

75

50

25

-25
-2

-75

Figure 6.24: Clustering results on VGAE embeddings visualized with PCA (left), t-SNE (center),
and UMAP (right), using k-means (top row), DBSCAN (middle row), and Spectral clustering
(bottom row).

o4

Results

Chapter 6

Table 6.6: Adjusted Rand Index (ARI) between
clustering methods (VGAE)

Table 6.7: Adjusted Mutual Information (AMI)
between clustering methods (VGAE)

k-means DBSCAN Spectral k-means DBSCAN Spectral
k-means 1.00 0.13 0.52 k-means 1.00 0.26 0.62
DBSCAN 0.13 1.00 0.18 DBSCAN 0.26 1.00 0.30
Spectral 0.52 0.18 1.00 Spectral 0.62 0.30 1.00

The parameter selection was very challenging, as neither the visualizations with PCA, t-SNE
and UMAP, nor the radial sector maps could guide the choice. Finally, € was set to 0.45 and
min_samples to 20, resulting in 7 clusters and 50.58% of outliers.

Spectral clustering The eigengap heuristic suggested setting the number of clusters &k to 1,
for which the Silhouette, CH and DB scores could not be computed. Analyzing the trend for
different values of k& showed that the maximum of the Silhouette and the minimum of the DB
scores were likewise achieved at k = 1. However, the maximum of the CH score was achieved at
k = 6. Since analyzing a single cluster is not very informative, similarly as with k-means, k was
set to 6.

Observations Unfortunately, the clusters produced by the three algorithms appear mixed and

are extremely difficult to interpret.

6.2.3 DGLC

As described in Section 5.2.2 the number of clusters was one of the hyperparameters of the model
to be specified apriori. This makes the analysis easier, as the number of clusters is ’known’, i.e. it
doesn’t need to be determined using the heuristics, clustering coefficients or visualizations as with
the other methods. Three different models were trained with 10, 20 and 30 clusters, respectively.
It is important to note that in this setting only k-means and Spectral clustering were used, as
they allow the number of clusters to be specified in advance, unlike DBSCAN. Table 6.8 gives the
Silhouette, CH and DB scores for each configuration. The Silhouette score in all scenarios is very
close to zero indicating that the clusters are overlapping. Furthermore, Table 6.9 shows the ARI
and AMI indices between the cluster assignments produced by k-means and Spectral clustering
for k equal to 10, 20 and 30, respectively.

Observations The clusters produced by the algorithms in all settings seem to correspond to
the size of the area covered by the cell, i.e. the number of tiles, similarly as in Sections 6.1.2
and 6.2.1, although mixed. Figure 6.25 shows bar plots of the average number of tiles per cell

per cluster (with standard deviation) for k-means and Spectral clustering for different number

95

Results Chapter 6

Table 6.8: Clustering coefficients for k-means and Spectral clustering (DGLC)

k-means Spectral clustering
Number of clusters (k) Silhouette CH DB | Silhouette = CH DB
10 0.09 932.86 1.95 -0.16 357.65 2.06
20 0.07 1338.18 1.52 -0.12 505.11 1.98
30 0.03 594.94 1.85 -0.14 207.72 2.34

Table 6.9: ARI and AMI indices between k-means and Spectral clustering cluster assignments for
different numbers of clusters (DGLC)

Number of clusters (k) ARI AMI

10 0.07 0.31
20 0.10 0.37
30 0.21 0.47

of clusters. Furthermore, the radial sector maps show no conclusive patterns in terms of the
positions of the red throughput dominance, SINR or RSRP tiles. The only exception was when
the number of clusters was set to 30, as both k-means and Spectral clustering identified a few
clusters with a higher fraction of red throughput dominance tiles surrounding the mobile cell site.
Figure 6.26 shows the radial sector maps in this setting, together with a few examples for both
k-means and Spectral clustering.

o6

Results Chapter 6

Number of tiles per cell (k-means) Number of tiles per cell (Spectral clustering)
250 1 200
1754
= 200+ =
8 8 150 1
5} @
Q Q
[»n 1254
@ 1501 @
=] =]
5 ‘G 100
t c
8 8
€ 1001 € 75
3 3
f= c
c =4
© ®© 501
[[
S 504 =
:I: :|: :|: 25
ol , bz | ool
1 2 3 a 5 6 7 8 9 10 1 2 3 a 5 6 7 8 9 10
Cluster Cluster
Number of tiles per cell (k-means) Number of tiles per cell (Spectral clustering)
3001
2001
— 250 -
o] o]
o o
s c
[[
2 200 L Q 150
w wn
< K
Pt Pt
© 150 °
[@ 1001
Q Q
€ €
3 3
< 100 4 c
f=] =
© ©
Q U 501
= =
50] I I I
o I I I I I o,x[x _II _]Ixxz - PP
i Z‘ ‘3 4‘; F‘: é % é é 1‘0 1‘1 1‘2 1‘3 1‘4 1‘5 1‘6 1‘7 1é 1‘9 2‘0 i 2‘ ‘3 1‘3 5‘ é % é é 1‘0 1‘1 1‘2 1‘3 1‘4 1‘5 1‘5 1‘7 1‘8 1‘9 2‘0
Cluster Cluster
Number of tiles per cell (k-means) Number of tiles per cell (Spectral clustering)
350 1
200
300
o o
o o
w250 =
8 :l 3150
o 0
g 200 1 g
5 I 5
e i 2
2 150 g 10079
€ I €
3 3
c =
< 100 c
3 { 3 s0q
= =
il I | I I di
o I II t II I I I o x =TT III- il LW Th==E
AP L PP EP R RIS R R NP PR P PSS RSB P PR AP I PP EP R RIS FRRRI PR P PSP RSB P PR
Cluster Cluster

Figure 6.25: Average number of tiles per mobile cell per cluster for 10 (top row), 20 (middle row),
and 30 (bottom row) clusters produced by k-means (left) and Spectral clustering (right) (DGLC).

o7

Results Chapter 6

Cluster 6: 58 cells
1.0

Bad THR Probability per Sector
345° DD

15°

°
.
0.6 4 °
% o Op,
o oo
) :o.‘.

0.0

Cluster 4: 73 cells
1.0
Bad THR Probability per Sector

sase 0 150

W it

0.0

Figure 6.26: Radial sector maps of bad throughput probability for Cluster 6 (k-means; top row)
and Cluster 4 (Spectral clustering; bottom row), along with two example mobile cells (DGLC).

o8

rd 1)1scussion

Mobile network optimization is a promising area of research that can benefit from modern
applications of machine learning. As discussed, network tuning relies on the expertise of radio
network engineers, who analyze performance data to detect and resolve radio issues. However,
this process is repetitive and time-consuming. The goal of this thesis was to explore unsupervised
machine learning techniques for clustering a set of mobile cells based on their similarity. By
grouping mobile cells with similar characteristics, network engineers could analyze entire clusters
simultaneously, determine whether there is a shared problem, and apply a common solution,

saving valuable time.

7.1 Summary of results

The main challenge during this project was evaluation. The dataset of mobile cell performance
data contained no ground-truth labels, making it difficult to assess the validity of the clusters
produced by a single approach, let alone compare multiple methods. As presented, the objective
was to discover different spatial performance patterns; however, throughout the entire thesis, the

notion of a pattern remained vague.

Nevertheless, using the evaluation pipeline described in Section 5.4, results from different embed-
ding learning methods and clustering algorithms were analyzed. The pretrained CNN (Section 6.1.1
and single-layer KPI CAE (Section 6.1.2) identified the clearest patterns, mainly related to the
direction and distance of red tiles relative to the mobile cell site. However, these patterns were
only useful to radio network engineers when the red tiles were outside the coverage area of the cell
(determined by its range, beam direction, and sector angle). The multi-layer CAE (Section 6.1.2)
grouped cells based on the size and shape of their coverage areas, as indicated by the tiles. On the
other hand, embedding learning methods on graphs were less successful. The GAE and VGAE
(Section 6.2.2) produced results that were not interpretable, while the clusters from FEATHER
(Section 6.2.1) and DGLC (Section 6.2.3) mostly reflected the size of the graphs, similar to the
multi-layer KPI CAE. FEATHER also managed to completely isolate isomorphic graphs (i.e.,
graphs with identical structure) in some clusters, but this was not useful for the purposes of this

thesis.

99

Discussion Chapter 7

Regarding the clustering algorithms, hyperparameter selection was generally difficult, suggesting
that the data was not well-suited for clustering. Heuristics and clustering coefficients usually did
not provide meaningful guidance. There was no clear consensus on which clustering algorithm
performed best: in some scenarios, DBSCAN outperformed k-means, but in others it failed
completely.

Additionally, the idea of grouping mobile cells together does not necessarily make the task of
network engineers easier. Specifically, during the validation phase, engineers still needed to
examine each of the cells carefully and determine what makes them similar. In other words,
explainability was missing, making the proposed semi-automatic process unreliable. Just because
mobile cells had a red tile in the same position did not mean they necessarily had a problem, or
that they shared a common problem. Engineers always look at neighboring cells, something that
was not considered in this project.

7.2 Future directions

During this thesis, several alternative directions were proposed but not pursued due to the lack
of available data. Some of them are listed below and may serve as potential directions for future

work.

Predict the problem Instead of clustering mobile cells and hoping that elements of a cluster
could be linked to similar radio issues, one could try to predict the radio issue directly. This
approach would require a dataset of mobile cell performance data labeled with the corresponding
problems. To collect this dataset, network engineers could indicate the issue directly from a
predefined set (e.g., back-lobe phenomenon). However, this assumes that all possible patterns
are known in advance. Alternatively, engineers could provide a textual description on what they
observe, which could then be processed by a large language model (LLM) to synthesize a set of
labels.

Predict the action Network tuning is a process that involves two main steps: detection
and mitigation. The detection phase involves analyzing the performance of a mobile cell using
various metrics and tools to determine whether an issue is present. The mitigation phase consists
of deciding which action to take to resolve the identified problem. These resolutions include
increasing or decreasing the mobile cell’s power, adjusting the tilt (upwards, downwards or
sideways), or tuning neighboring cells. Hence, one could try to predict which changes to the
configuration are the most likely to improve performance. This direction requires a dataset of
mobile cell performance characteristics together with the changes made to their configuration
parameters. Fortunately, such a dataset would be relatively easy to collect, since before-and-after
configuration parameters (e.g., power in watts, tilt in degrees) can be automatically recorded.
The predictions can target individual configuration parameters, indicating whether each should

60

Discussion Chapter 7

be increased, decreased, or left unchanged.

Predict the result Building on the previous ideas, one could aim to predict future performance
characteristics, such as the footprint of a mobile cell after a configuration change. When the
number of possible changes is small, such a classifier could achieve the same outcome as directly
predicting the action, since one could simply select the action that leads to the best performance.
Since tuning is often iterative, it can take several weeks to fully optimize a group of mobile cells.
Training such a model would require before-and-after performance data, along with the specific
configuration changes that were made.

Interactions between cells All of the presented directions can be approached with varying
levels of complexity (e.g., considering only a single mobile cell, or including its neighboring cells as
well). Predicting the correct action or the outcome can be challenging, as mobile cells are rarely
independent. There are often mutual interferences and interactions that affect performance.

61

Conclusion

This thesis addresses the problem of unsupervised pattern discovery for mobile network tuning
optimization. Specifically, the goal was to cluster mobile cells based on the similarity between
their performance measured by different KPIs. The motivation behind was to propose a semi-
automatized tool, aiming to reduce the workload of radio network engineers. Different data
representation methods, embedding learning techniques and clustering algorithms were used to
achieve this goal. Due to the lack of ground truth labels, the setting was fully unsupervised,
which made evaluation challenging.

Throughout the duration of this thesis, the notion of a spatial performance pattern remained
vague, which made it difficult for the project to have a clear question and rather resulted in a
thesis with an exploratory nature. Although promising, the applied techniques failed to capture
performance patterns useful to identify radio network issues. In scenarios where some patterns
were identified, those were either irrelevant to the radio network engineers or linked to a problem
with a neighboring cell. Concretely, the pretrained CNN and the single-layer KPI CAE identified
the clearest patterns, mainly related to the direction and distance of red tiles relative to the
cell site, while the multi-layer KPI CAE grouped cells by the size and shape of their coverage
areas. Graph-based embedding methods were less successful: the GAE and VGAE produced
uninterpretable results, while FEATHER and DGLC mostly captured the graph size, with
FEATHER occasionally isolating isomorphic graphs in separate clusters.

Future work could benefit from labeled data, which would make evaluation more reliable and
allow comparing methods in a more meaningful way. The project showed that while clustering
can reveal similarities between mobile cells, these alone are not enough to support network
optimization.

62

Bibliography

Raivio, Kimmo et al. (Apr. 2003). “Analysis of Mobile Radio Access Network Using the Self-Organizing
Map”. In: pp. 439-451. 1SBN: 1-4020-7418-2.

Gomez-Andrades, Ana et al. (2016). “Automatic Root Cause Analysis for LTE Networks Based on
Unsupervised Techniques”. In: IFEFE Transactions on Vehicular Technology 65.4, pp. 2369-2386.

Liu, Xuewen et al. (2019). “KQIs-Driven QoE Anomaly Detection and Root Cause Analysis in Cellular
Networks”. In: 2019 IEEE Globecom Workshops (GC Wkshps), pp. 1-6.

Wang, Shaoxuan and Ramon Ferras (2021). “Extracting Cell Patterns From High-Dimensional Radio
Network Performance Datasets Using Self-Organizing Maps and K-Means Clustering”. In: IEEE Access
9, pp. 42045-42058.

Zhang, Wuyang et al. (Mar. 2019). “Self-Organizing Cellular Radio Access Network with Deep Learning”.
In.

Li, Shuyang, Gianluca Francini, and Enrico Magli (2023). “Temporal dynamics clustering for analyzing
cell behavior in mobile networks”. In: Computer Networks 223, p. 109578. 1SSN: 1389-1286.

Lu, Shun et al. (2022). “Mobile Networks Classification Based on Time-Series Clustering”. In: 2022 IEEE
5th International Conference on Electronics and Communication Engineering (ICECE), pp. 65-71.

Mazguta, Jakub, Dariusz Krol, and Ireneusz Jabtoniski (2024). “Temporal and Multivariate Similarity
Clustering of 5G Performance Data”. In: IEEE Access 12, pp. 114137-114145.

Shibli, Ali and Tahar Zanouda (2024). “Context-Aware Mobile Network Performance Prediction Using
Network & Remote Sensing Data”. arXiv: 2405.00220 [cs.LG].

Fukushima, Kunihiko (Apr. 1980). “Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position”. In: Biological Cybernetics 36.4, pp. 193-202.

LeCun, Y. et al. (1989). “Backpropagation Applied to Handwritten Zip Code Recognition”. In: Neural
Computation 1.4, pp. 541-551.

Dubey, Shiv Ram, Satish Kumar Singh, and Bidyut Baran Chaudhuri (2022). “Activation Functions in
Deep Learning: A Comprehensive Survey and Benchmark”. arXiv: 2109.14545 [cs.LG].

Lecun, Y. et al. (1998). “Gradient-based learning applied to document recognition”. In: Proceedings of the
[EEE 86.11, pp. 2278-2324.

63

https://arxiv.org/abs/2405.00220
https://arxiv.org/abs/2109.14545

Bibliography

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (May 2017). “ImageNet classification with deep
convolutional neural networks”. In: Commun. ACM 60.6, pp. 84-90. 1sSN: 0001-0782.

Simonyan, Karen and Andrew Zisserman (2015). “Very Deep Convolutional Networks for Large-Scale
Image Recognition”. arXiv: 1409.1556 [cs.CV].

He, Kaiming et al. (2015). “Deep Residual Learning for Image Recognition”. arXiv: 1512.03385 [cs.CV].

Guo, Xifeng et al. (2017). “Deep Clustering with Convolutional Autoencoders”. In: Neural Information
Processing. Lecture notes in computer science. Cham: Springer International Publishing, pp. 373-382.

Kipf, Thomas N. and Max Welling (2017). “Semi-Supervised Classification with Graph Convolutional
Networks”. arXiv: 1609.02907 [cs.LG].

Velickovié, Petar et al. (2018). “Graph Attention Networks”. arXiv: 1710.10903 [stat.ML].

Kipf, Thomas N. and Max Welling (2016). “Variational Graph Auto-Encoders”. arXiv: 1611.07308
[stat.ML].

Kingma, Diederik P and Max Welling (2022). “Auto-Encoding Variational Bayes”. arXiv: 1312.6114
[stat.ML].

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). “Stochastic Backpropagation and
Approximate Inference in Deep Generative Models”. arXiv: 1401.4082 [stat.ML].

Cai, Jinyu et al. (2023). “Deep Graph-Level Clustering Using Pseudo-Label-Guided Mutual Information
Maximization Network”. arXiv: 2302.02369 [cs.LG].

Sun, Fan-Yun et al. (2020). “InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation
Learning via Mutual Information Maximization”. arXiv: 1908.01000 [cs.LG].

Nowozin, Sebastian, Botond Cseke, and Ryota Tomioka (2016). “f~GAN: Training Generative Neural
Samplers using Variational Divergence Minimization”. arXiv: 1606.00709 [stat.ML].

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (Oct. 1986). “Learning representations
by back-propagating errors”. In: Nature 323.6088, pp. 533-536. 1SSN: 1476-4687.

Xie, Junyuan, Ross Girshick, and Ali Farhadi (2016). “Unsupervised Deep Embedding for Clustering
Analysis”. arXiv: 1511.06335 [cs.LG].

Rozemberczki, Benedek and Rik Sarkar (2020). “Characteristic Functions on Graphs: Birds of a Feather,
from Statistical Descriptors to Parametric Models”. arXiv: 2005.07959 [cs.LG].

Lloyd, S. (1982). “Least squares quantization in PCM”. In: IEEE Transactions on Information Theory
28.2, pp. 129-137.

Ester, Martin et al. (1996). “A density-based algorithm for discovering clusters in large spatial databases

with noise”. In: Proceedings of the Second International Conference on Knowledge Discovery and Data
Mining. KDD’96. Portland, Oregon: AAAT Press, pp. 226-231.

64

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082
https://arxiv.org/abs/2302.02369
https://arxiv.org/abs/1908.01000
https://arxiv.org/abs/1606.00709
https://arxiv.org/abs/1511.06335
https://arxiv.org/abs/2005.07959

Bibliography

Luxburg, Ulrike von (Dec. 2007). “A tutorial on spectral clustering”. In: Stat. Comput. 17.4, pp. 395-416.

Shi, Jianbo and J. Malik (2000). “Normalized cuts and image segmentation”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 22.8, pp. 888-905.

Ng, Andrew Y., Michael I. Jordan, and Yair Weiss (2001). “On Spectral Clustering: Analysis and an
algorithm”. In: ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS. MIT Press,
pp. 849-856.

Rousseeuw, Peter J. (1987). “Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis”. In: Journal of Computational and Applied Mathematics 20, pp. 53—65. 1SSN: 0377-0427.

Calinski, Tadeusz and Harabasz JA (Jan. 1974). “A Dendrite Method for Cluster Analysis”. In: Communi-
cations in Statistics - Theory and Methods 3, pp. 1-27.

Davies, David L. and Donald W. Bouldin (1979). “A Cluster Separation Measure”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-1.2, pp. 224-227.

Rand, William M (Dec. 1971). “Objective criteria for the evaluation of clustering methods”. In: J. Am.
Stat. Assoc. 66.336, p. 846.

Vinh, Nguyen Xuan, Julien Epps, and James Bailey (2009). “Information theoretic measures for clusterings
comparison: is a correction for chance necessary?” In: Proceedings of the 26th Annual International
Conference on Machine Learning. ICML ’09. Montreal, Quebec, Canada: Association for Computing
Machinery, pp. 1073-1080. 1SBN: 9781605585161.

Pearson, Karl and Francis Galton (1895). “VII. Note on regression and inheritance in the case of
two parents”. In: Proceedings of the Royal Society of London 58.347-352, pp. 240-242. eprint: https:
/ /royalsocietypublishing.org/doi/pdf/10.1098 /rspl.1895.0041.

Spearman, C (Jan. 1904). “The proof and measurement of association between two things”. In: Am. J.
Psychol. 15.1, p. 72.

Kuckartz, Udo et al. (Sept. 2013). Statistik. 2nd ed. Vs Verlag Fur Sozialwissenschaften.

Deng, Jia et al. (2009). “ImageNet: A large-scale hierarchical image database”. In: 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 248-255.

Jolliffe, Tan (Oct. 2005). “Principal Component Analysis”. In: Encyclopedia of Statistics in Behavioral
Science. Chichester, UK: John Wiley & Sons, Ltd.

Kingma, Diederik P. and Jimmy Ba (2017). “Adam: A Method for Stochastic Optimization”. arXiv:
1412.6980 [cs.LGI.

Narayanan, Annamalai et al. (2017). “graph2vec: Learning Distributed Representations of Graphs”. arXiv:
1707.05005 [cs.AI].

Thorndike, Robert L (Dec. 1953). “Who belongs in the family?” In: Psychometrika 18.4, pp. 267-276.

65

https://royalsocietypublishing.org/doi/pdf/10.1098/rspl.1895.0041
https://royalsocietypublishing.org/doi/pdf/10.1098/rspl.1895.0041
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1707.05005

Bibliography

Ketchen Jr, David J and Christopher L Shook (June 1996). “The application of cluster analysis in strategic
management research: An analysis and critique”. In: Strategic Manage. J. 17.6, pp. 441-458.

Schubert, Erich (June 2023). “Stop using the elbow criterion for k-means and how to choose the number
of clusters instead”. In: ACM SIGKDD Explorations Newsletter 25.1, pp. 36—42. 1SSN: 1931-0153.

Sander, Jorg et al. (June 1998). “Density-based clustering in spatial databases: The algorithm GDBSCAN
and its applications”. In: Data Min. Knowl. Discov. 2.2, pp. 169-194.

Schubert, Erich et al. (July 2017). “DBSCAN Revisited, Revisited: Why and How You Should (Still) Use
DBSCAN”. In: ACM Trans. Database Syst. 42.3. 1SSN: 0362-5915.

Maaten, Laurens van der and Geoffrey Hinton (2008). “Visualizing Data using t-SNE”. In: Journal of
Machine Learning Research 9.86, pp. 2579-2605.

MclInnes, Leland, John Healy, and James Melville (2020). “UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction”. arXiv: 1802.03426 [stat.ML].

Helber, Patrick et al. (2019). “EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use
and Land Cover Classification”. arXiv: 1709.00029 [cs.CV].

66

https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1709.00029

AN A ppendix

A.1 Pretrained CNN

A.1.1 Radial sector maps

Cluster 1: 16 cells Cluster 2: 20 cells Cluster 3: 44 cells
1.0 1.0 1.0
Bad THR Probability per Sector Bad THR Probability per Sector Bad THR Probability per Sector
[L3 3

345° _15° 345° 15° 3450 O qse

0.8
0.6
0.4
0.2
0.0 0.0 0.0
Cluster 4: 43 cells Cluster 5: 14 cells Cluster 6: 273 cells
1.0 1.0 1.0
Bad THR Probability per Sector Bad THR Probability per Sector Bad THR Probability per Sector
345 o lS° 345 0 15°
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0 0.0

Figure A.1: Spatial performance patterns discovered using DBSCAN on embeddings from the
Pretrained CNN, shown as radial sector maps of bad throughput probability per sector for each
cluster (1-6).

67

Appendix

Cluster 7: 10 cells Cluster 8: 27 cells Cluster 9: 16 cells

Bad THR Probability per Sector Bad THR Probability per Sector Bad THR Probability per Sector
[o o

345° 15° 34 150

3as0 O 1se

Cluster 10: 35 cells Cluster 11: 121 cells Cluster 12: 13 cells

1.0 1.0 1.0
Bad THR Probability per Sector Bad THR Probability per Sector Bad THR Probability per Sector
s O _15° s O _15° 345° 0 150
y . : . b 75° . 3 0.6
A X o) A /_hooo : B X doo o 0.4
‘, o b jL50p o . o
2000 / A 0 y
"N . . 2500 : E N 5 s 0.2
0.0 0.0 0.0

Cluster 13: 31 cells Cluster 14: 11 cells Cluster 15: 10 cells

Bad THR Probability per Sector
o

Bad THR Probability per Sector
345° 15° 0

Bad THR Probability per Sector
345“ _ 15° 0

345° 15°

500°
11000
1500
12000
0.2

2500

3000

Cluster 16: 22 cells Cluster 17: 14 cells Cluster 18: 10 cells

Bad THR Probability per Sector Bad THR Probability per Sector Bad THR Probability per Sector
sase O s Bt s O 15

0.0 0.0 0.0

Figure A.2: Spatial performance patterns discovered using DBSCAN on embeddings from the
Pretrained CNN, shown as radial sector maps of bad throughput probability per sector for each
cluster (7-18).

68

Appendix

Cluster 1: 431 cells Cluster 2: 307 cells Cluster 3: 167 cells

Bad THR Probability per Sector Bad THR Probability per Sector Bad THR Probability per Sector
[o o

345° 15° 350 O a0

3as0 O 1se

Cluster 4: 36 cells Cluster 5: 231 cells Cluster 6: 45 cells

1.0 1.0 1.0
Bad THR Probability per Sector Bad THR Probability per Sector Bad THR Probability per Sector
345° 0 15° 345’ 0 _ 15° 345" 0 _ 15°
- 4 O . . A s . . . 0.8
y . : . y b 75° . 3 0.6
| | 500"] 500"
N y y ° - A [1000" ° - A 000 : 0.4
‘ 5 o b [L50R o . o
2000 / A 0 y
" : . 2500 : . " s s 02
0.0 0.0 0.0

Cluster 7: 51 cells Cluster 8: 89 cells Cluster 9: 172 cells

Bad THR Probability per Sector
o

Bad THR Probability per Sector
345° 15° 0

Bad THR Probability per Sector
345“ _ 15° 0

345° 15°

500°
11000
1500
12000
0.2

2500

3000

Cluster 10: 12 cells Cluster 11: 20 cells Cluster 12: 15 cells

Bad THR Probability per Sector Bad THR Probability per Sector Bad THR Probability per Sector
sase O s Bt s O 15

0.0 0.0 0.0

Figure A.3: Spatial performance patterns discovered using Spectral clustering on embeddings
from the Pretrained CNN, shown as radial sector maps of bad throughput probability per sector
for each cluster (1-12).

69

Appendix

Cluster 13: 26 cells Cluster 14: 19 cells Cluster 15: 10 cells

Bad THR Probability per Sector Bad THR Probability per Sector Bad THR Probability per Sector
[o o

345° 15° 34 150

3as0 O 1se

Cluster 16: 66 cells Cluster 17: 14 cells Cluster 18: 35 cells

1.0 1.0 1.0

Bad THR Probability per Sector Bad THR Probability per Sector Bad THR Probability per Sector

345° 0 15° 345’ 0 _ 15° 345" 0 _ 15°
- 4 O . . A s . . . 0.8
y . : . y b 75° . 3 0.6
\ | | 500"] 5
A T X o) A 11000 : B X doo o 0.4
‘ 5 o b jL50p o . o

2 2000 / A 0 y
TN 0 . . 2500 . E N 5 s 0.2
0.0 0.0 0.0

Cluster 19: 15 cells Cluster 20: 21 cells Cluster 21: 27 cells

Bad THR Probability per Sector
o

Bad THR Probability per Sector
345° 15° 0

Bad THR Probability per Sector
345“ _ 15° 0

345° 15°

500°
1000
1500
12000
0.2

2500

3000

Cluster 22: 42 cells Cluster 23: 42 cells Cluster 24: 34 cells

Bad THR Probability per Sector Bad THR Probability per Sector Bad THR Probability per Sector
sase O s Bt s O 15

0.0 0.0 0.0

Figure A.4: Spatial performance patterns discovered using Spectral clustering on embeddings
from the Pretrained CNN, shown as radial sector maps of bad throughput probability per sector
for each cluster (13-24).

70

Appendix

Cluster 25: 58 cells Cluster 26: 27 cells Cluster 27: 26 cells
1.0 1.0 1.0
Bad THR Probability per Sector Bad THR Probability per Sector Bad THR Probability per Sector
[o o

E Lt

350 O a0

3as0 O 1se

0.0 0.0 0.0

Cluster 28: 138 cells Cluster 29: 12 cells Cluster 30: 19 cells

1.0 1.0 1.0
Bad THR Probability per Sector Bad THR Probability per Sector Bad THR Probability per Sector
0° 0° 0°

345° 15° 345° 15° 3a5° 15°

11000

1500

12000!

0.0 0.0 0.0

Figure A.5: Spatial performance patterns discovered using Spectral clustering on embeddings
from the Pretrained CNN, shown as radial sector maps of bad throughput probability per sector
for each cluster (25-30).

71

Appendix

A.2 Convolutional Autoencoder

A.2.1 Hyperparameter tuning

In this section, the training and validation losses for different configurations of the CAE architec-
ture are presented. The main hyperparameter to select was the hidden dimension size, which
corresponds to the embedding vector size. The models were trained for up to 100 epochs using
the Adam optimizer with a learning rate of 0.001. The checkpoint with the best validation loss
was saved. Table A.1 presents the training and validation MSE for each configuration. Rows with
the lowest validation losses are highlighted in bold.

Table A.1: Training and validation results for different Single-layer KPI CAE configurations

Hidden Dimension Batch Size Train Loss (MSE) Validation Loss (MSE)

8 16 0.000594 0.000692
8 32 0.000687 0.00074
16 16 0.000432 0.000504
16 32 0.000594 0.000618
32 16 0.000352 0.000432
32 32 0.001130 0.001107
64 16 0.00032 0.00039
64 32 0.000671 0.000818

Table A.2: Training and validation results for different Multi-layer KPI CAE configurations

Hidden Dimension Batch Size Train Loss (MSE) Validation Loss (MSE)

8 16 0.005934 0.005764
16 16 0.005460 0.005710
32 16 0.005032 0.005322
64 16 0.004506 0.005028

Figures A.7 and A.7 show the original and reconstructed images from the models with the best

validation losses.

A.3 Graph Autoencoder

A.3.1 Hyperparameter tuning

In this section, the training and validation losses for different configurations of the GAE architec-
ture are presented. The main hyperparameter to select was the hidden dimension size, which
corresponds to the embedding vector size. The models were trained for up to 100 epochs using
the Adam optimizer with a learning rate of 0.01. The checkpoint with the best validation loss was
saved. Table A.3 presents the training and validation binary cross entropy for each configuration.

72

Appendix

Original Original Original Original
" e L
Reconstruction Reconstruction Reconstruction Reconstruction
. - i

Figure A.6: Original images from the test set and their reconstructions produced by the single-KPI
CAE model with a hidden dimension of 64 and batch size of 16.

Rows with the lowest validation losses are highlighted in bold.

Table A.3: Training and validation results for different GAE configurations

Hidden Dimension Batch Size Train Loss Validation Loss

8 32 0.9683 0.9600
16 32 0.9322 0.9204
32 32 0.9115 0.9025
64 32 0.9108 0.8975
128 32 0.9329 0.9096

A.4 Variational Graph Autoencoder

A.4.1 Hyperparameter tuning

In this section, the training and validation losses for different configurations of the VGAE
architecture are presented. The main hyperparameter to select was the hidden dimension size,
which corresponds to the embedding vector size. The models were trained for up to 100 epochs
using the Adam optimizer with a learning rate of 0.01. The checkpoint with the best validation
loss was saved. Table A.4 presents the training and validation binary cross entropy for each
configuration. Rows with the lowest validation losses are highlighted in bold.

73

Appendix

THR: Original

A

THR: Reconstruction

SINR: Original

SINR: Reconstruction

RSRP: Original

RSRP: Reconstruction

THR: Original

THR: Reconstruction

f;}

SINR: Original

SINR: Reconstruction

RSRP: Original

RSRP: Reconstruction

f;}

THR: Original

THR: Reconstruction

-

SINR: Original

SINR: Reconstruction

-
-t »
P

RSRP: Original

RSRP: Reconstruction

- -

THR: Original

Ielip

THR: Reconstruction

SINR: Original

Ylips

SINR: Reconstruction

ime

RSRP: Original

.
“

RSRP: Reconstruction

Figure A.7: Original images from the test set and their reconstructions produced by the multi-KPI
CAE model with a hidden dimension of 64 and batch size of 16.

74

Appendix

Table A.4: Training and validation results for different VGAE configurations

Hidden Dimension Batch Size Train Loss Validation Loss

8 32 0.9985 0.9835
16 32 0.9749 0.9643
32 32 0.9854 0.9699
64 32 1.0425 1.0238
128 32 1.1601 1.1351

A.5 Deep Graph Level Clustering (DGLC)

A.5.1 Hyperparameter tuning

In this section, the training and the validation losses for different configurations of the DGLC
framework are presented. The main hyperparameter to select was the size of the clustering
embedding dimension, which corresponds to the size of the graph-level embedding vector. The
models were trained up to 100 epochs, using the Adam optimizer with a learning rate of 107°.
The batch size was set to 16 and the dimension of the hidden dimension was set to 64. The
number of layers of the GNN was 4. As the number of clusters was to be specified apriori, three
different models were trained with 10, 20, and 30 clusters, respectively. Table A.5 presents the
training and validation loss for each configuration. Rows with the lowest validation losses are
highlighted in bold.

Table A.5: Training and validation results for different DGLC configurations

Number of clusters Clustering embedding dimension Train Loss Validation Loss

10 16 -15.0987 -8.3578
10 32 -15.0868 -4.1977
10 64 -15.1042 -3.1101
20 16 -15.0301 -7.6374
20 32 -15.0727 2.1005

20 64 -15.1246 -0.4739
30 16 -15.0051 -3.8088
30 32 -14.8062 -4.8191
30 64 -15.0305 7.7953

A.6 Satellite images

As mentioned in Section 5.2.1, the geographical context (i.e. the map) was removed during the
preprocessing steps of the image-based representations for simplicity. However, as discussed
by (Shibli and Zanouda 2024) the geographical location (e.g., satellite imagery) can provide

75

Appendix

Figure A.8: Illustration of Steps 1 and 2 of the preliminary experimental setup.

information about the topography, urban density and foliage, which influence the performance of
mobile cells. (Shibli and Zanouda 2024) partition the set of mobile cells into different clusters
based on the similarity between their coverage areas. They train a separate KPI prediction model
for each cluster and show that this approach improves performance compared to training a single
common model. Similarly as their approach, the preliminary experimental setup consisted of the
following steps:

1. Calculate the bounding box coordinates for the coverage area of each mobile cell based
on the cell range, beam direction, and sector angle. The bounding box is the minimal
rectangular area, with sides parallel to the meridians and parallels, which contains the
coverage area of the cell. The bounding box is given by two pairs of latitude and longitude.

2. Extract the satellite images corresponding to the bounding box of the coverage areas of
each mobile cell using the Sentinel Hub API!. An example is given in Figure A.S.

3. Use a pretrained ResNet-50 (He et al. 2015) model on the EuroSAT (Helber et al. 2019)
dataset to extract embeddings corresponding to the coverage area of each mobile cell. The
last classification of the model was removed, so that the model can be used for feature
extraction. PCA was applied to reduce the size of the resulting embeddings.

4. Use a clustering algorithm (e.g., k-means) to partition the set of mobile cells based on the
similarity between their coverage ares.

The naive hypothesis behind this experimental setup was that the resulting clusters will reveal
spatial performance patterns, which was not the case. However, there is potential in using the
geographical context to discover performance issues. As an example, the interpretation by the
network engineers in Section 6.1.2 suggests that some behaviors might be considered normal if
the mobile cell is located outside an urban area, but problematic otherwise. Further research
work could adopt the same setting as this thesis and combine it with the information about
the geographical location, or it can build on the ideas discussed in Section 7 and train separate
prediction models as (Shibli and Zanouda 2024).

"https://dataspace.copernicus.eu/analyse/apis/sentinel-hub

76

https://dataspace.copernicus.eu/analyse/apis/sentinel-hub

	Introduction
	Related work
	Theoretical Background
	Convolutional Neural Network
	Convolutional Autoencoder
	Graphs
	Graph Neural Network
	Graph Convolutional Network
	Graph Autoencoder
	Variational Graph Autoencoder
	Deep Graph-Level Clustering (DGLC)
	FEATHER
	Clustering algorithms
	k-means algorithm (Lloyd's algorithm)
	DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
	Spectral clustering

	Clustering performance evaluation
	Silhouette Coefficient
	Calinski-Harabasz Index
	Davies-Bouldin Index
	Adjusted Rand Index
	Adjusted Mutual Information Score

	Data
	Performance metrics
	Data preparation
	Exploratory data analysis

	Methods
	Data representation
	Image-based representation
	Graph-based representation

	Embedding techniques
	Methods for image-based representations
	Methods for graph-based representations

	Clustering algorithms
	Evaluation

	Results
	Image-based representations
	Pretrained CNN
	Convolutional Autoencoder

	Graph-based representations
	FEATHER
	(Variational) Graph Autoencoder
	DGLC

	Discussion
	Summary of results
	Future directions

	Conclusion
	Bibliography
	Appendix
	Pretrained CNN
	Radial sector maps

	Convolutional Autoencoder
	Hyperparameter tuning

	Graph Autoencoder
	Hyperparameter tuning

	Variational Graph Autoencoder
	Hyperparameter tuning

	Deep Graph Level Clustering (DGLC)
	Hyperparameter tuning

	Satellite images

